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Abstract 

Black pepper is the most important and widely consumed spice in the world. Insects and diseases are the major 
concerns for black pepper production, among the many variables causing a decline in black pepper productivity. The 
major diseases that affect black pepper are foot rot (Phytophthora capsica) and anthracnose (Colletotrichum gloeospori-
oides). Early and precise diagnosis of diseases is crucial as it will enable the farmers to make timely interventions. In 
the current scenario, the application of image processing and deep learning techniques for the automatic detec-
tion of plant diseases emerges as a solution capable of promptly delivering interventions in time-sensitive scenarios, 
given its capacity to deliver performance approaching expert levels. Through this study, a deep learning-based 
approach has been developed to classify black pepper diseases based on leaf images. A model has been developed 
to detect the two major diseases of black pepper, i.e., anthracnose and foot rot diseases, using a Convolutional Neural 
Network (CNN) in Kerala, India. We have collected 2786 leaf images from different black pepper farms in Kerala, 
belonging to three classes of pepper diseases and one healthy leaf class in total. The classes of leaf diseases consid-
ered include an early and advanced stage of anthracnose, and Phytophthora foot rot. As the accuracy of the model 
increases with the number of images, different image augmentation techniques are performed on the originally 
captured images to generate a total of 18,234 images. The developed CNN model has been compared with eight 
other pre-trained state-of-the-art models, such as VGG16, VGG19, ResNet50, ResNet50V2, MobileNet V2, DenseNet121, 
InceptionV3, and Xception. The result shows that the developed CNN model attained a higher classification accuracy, 
precision, recall, and F1-score of 98.72%, 99.28%, 97.65%, and 98.66% respectively, on the unseen test dataset. A web 
application named “Black pepper Disease Identification App” for demonstrating the proposed model is developed. 
According to an overall performance assessment, deep learning is an effective technique for classifying black pepper 
diseases based on leaf images and identifying them in their early stages. Based on the overall performance, the newly 
developed model is found to be efficient in classifying the selected pepper diseases. The proposed model holds sig-
nificant promise for enabling the timely identification of diseases with minimal human intervention. Its deployment 
benefits both researchers and farmers by facilitating prompt disease detection directly in the field.
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Background
Black pepper (Piper nigrum L.), also known as the “king 
of spices” and “black gold”, is one of the most important 
and widely consumed spices across the globe; it is culti-
vated in over 26 countries and produces about 561,500 
tonnes of pepper annually (Krishnamoorthy and Par-
thasarathy 2010; Ravindran et al. 2012). Among the pep-
per-growing countries, India stands in the third position 
in terms of production (64,000  tonnes) with an area of 
278,050 ha. Within India, Kerala holds the second posi-
tion, contributing 32.6% of the national production with 
21,000  tonnes (Spices Board 2023). Black pepper is val-
ued for its distinctive flavour and pungency, and it is used 
in culinary applications and ayurvedic medicine to treat 
ailments like colds and fever. However, its yield can be 
significantly impacted by various diseases. Among the 
reported 17 diseases of black pepper (Anandaraj and 
Sarma 1995), phytophthora foot rot and anthracnose dis-
eases are particularly prevalent in Indian pepper grow-
ing regions. Phytophthora foot rot is estimated to cause 
crop loss ranging from 25 to 30% in Kerala and affecting 
44–48% of vines in Karnataka, India (Mammootty et al. 
2008). Specifically, in the Kozhikode and Kannur districts 
of Kerala, annual losses have been reported to reach 1000 
tonnes. Additionally, anthracnose disease poses a consid-
erable threat to pepper spikes, causing damage ranging 
from 1.93 to 9.54%, with potential losses reaching as high 
as 67% under extreme circumstances (Devasahayam et al. 
2008).

Early and accurate disease identification is crucial for 
effective management and controlling the spread of dis-
eases (Sethy et al. 2020). The traditional approach relies 
on visual inspection by plant pathologists, experienced 
farmers, or agricultural specialists. However, this method 
requires specialized skills and demands more time, 
energy, resources, and physical energy to a large extent 
(Sankaran et al. 2010; Li et al. 2020). Also, visual inspec-
tion demands consistent monitoring by experts, which 
makes it an expensive affair to the farmers in remote 
locations (Lu et  al. 2017; Ramcharan et  al. 2017; Chen 
et  al. 2020). Consequently, the development of a fast, 
automated, cost-effective, and accurate approach to plant 
disease detection is imperative.

The advent of Deep Learning (DL) has revolution-
ized the field of image analysis and computer vision 
(Hemanth and Estrela 2017; Chandel et  al. 2021). 
Recently, DL, a class of Machine Learning techniques, 
has outperformed humans in tasks like image classifi-
cation and can automatically identify optimal features 
for plant disease detection (Bock et al. 2020). Convolu-
tional Neural Networks (CNNs), a DL technique, have 
become a prominent tool for automatic disease identi-
fication in crops utilizing digital images (Kamilaris and 

Prenafeta-Boldu 2018; Haque et  al. 2022). In the cur-
rent scenario, DL-based automated disease identifica-
tion approaches are achieving expert-level performance 
during critical periods and outperforming conventional 
disease detection methodologies.

DL techniques have demonstrated effectiveness in 
identifying diseases across a range of crops, including 
citrus (Barman et al. 2020), apple (Liu et al. 2017; Wang 
et  al. 2017; Luo et  al. 2021), potato (Oppenheim et  al. 
2019; Verma et  al. 2020), rice (Lu et  al. 2017; Shrivas-
tava et  al. 2019; Sharma et  al. 2020), tomato (Ashqar 
and Abu-Naser 2019; Tm et  al. 2018; Agarwal et  al. 
2020; Kaushik et al. 2020; Kibriya et al. 2021; Islam et al. 
2022), soybean (Wallelign et  al. 2018), banana (Amara 
et al. 2017), maize (Mishra et  al. 2020; Prashanthi and 
Srinivas 2020; Haque et al 2022), peach (Bedi and Gole 
2021), cassava (Abayomi‐Alli et  al. 2021), sunflower 
(Sirohi and Malik 2021), guava (Mostafa et  al. 2021), 
vine (Kerkech et  al. 2020), coffee (Kumar et  al. 2020), 
and multiple leaf diseases (Mohanty et al. 2016; Slado-
jevic et  al. 2016; Ferentinos 2018; Yadav et  al. 2018; 
Francis and Deisy 2019; Pallagani et  al. 2019; Mad-
hulatha and Ramadevi 2020; Ahmed and Reddy 2021; 
Chowdhury et al. 2021; Tiwari et al. 2021; Pandian et al. 
2022). Additionally, a few deep-learning models have 
been specifically developed for disease classification in 
black pepper crops (Khew et al. 2021; Chen et al. 2023; 
Kini et al. 2024).

While CNNs have demonstrated promise in this 
area, further exploration is necessary to optimize their 
performance for specific crops and disease classifica-
tions. This study aims to investigate the application 
of a CNN model for classifying black pepper leaf dis-
eases. The developed CNN model is designed to dif-
ferentiate between healthy leaves and leaves infected 
with two prevalent diseases: phytophthora foot rot and 
anthracnose. Our proposed model achieves notewor-
thy outcomes during the classification of black pepper 
diseases. Also, a comparative analysis demonstrates 
that our model outperforms pre-trained state-of-the-
art CNN models. The following are the major contri-
butions of the study: initially, a novel image dataset 
encompassing four classes of black pepper leaves was 
constructed. Images were captured from various pep-
per fields in Kerala, India, ensuring diverse real-field 
conditions. Second, we developed a CNN model by 
optimizing the hyperparameters by iteratively tun-
ing while monitoring the model’s performance. Com-
pared to other pre-trained models, the customized 
model achieved a significant performance in classifying 
images of black pepper even with diverse and complex 
backgrounds.
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Results
Proposed model
The first convolutional layer employs 32 filters with a 3 × 3 
kernel and ReLU activation function, designed to process 
128 × 128 pixel RGB images. Subsequent convolutional 
layers progressively increase the number of filters (64, 
128, 512) to capture increasingly complex features. Fol-
lowing each convolutional layer, a max-pooling layer with 
a 2 × 2 window downsamples the feature maps. A flatten-
ing layer transforms the output from the convolutional 
layers into a one-dimensional vector. This vector is then 
fed into two fully connected layers with 512 and 64 neu-
rons, respectively, both utilizing ReLU activation. To pre-
vent overfitting, L2 kernel regularization with a strength 
of 0.001 is applied in these dense layers. The final dense 
layer uses softmax activation to classify the input into 
one of the four classes (Additional file 1: Figure S1). The 
model is compiled with a categorical cross-entropy loss 
function and the Adam optimizer with a learning rate of 
0.001. Training is conducted for 50 epochs with a batch 
size of 64. The total number of trainable parameters in 
the model is 10,154,372 (Table 1).

Assessment of the model’s performance with different 
combinations of dropout and kernel regularizer
To optimize the model’s performance, we experimented 
with different combinations of L2 Kernel regulariza-
tion strength and dropout rate in the final output layer, 
while keeping all other parameters constant (four convo-
lutional-max pooling blocks, two fully connected layers 
with 512 and 64 neurons, and an output layer). As shown 
in Fig. 1, when the dropout rate was fixed at 0.1, models 
with a lower L2 regularization strength (0.001) achieved 
higher test accuracy compared to those with a higher 

strength (0.01). This suggests that a weaker L2 regulari-
zation might help prevent overfitting, leading to better 
model generalization. Interestingly, the model with only 
L2 regularization (strength of 0.001) achieved the high-
est test accuracy, indicating its strong ability to perform 
well on unseen data. The performance of the model with-
out L2 regularization and dropout was comparable to the 
best-performing model.

Assessment of the model’s performance using different 
batch size
To determine the optimal batch size for training, we 
experimented with four configurations: 8, 16, 32, and 
64 images per batch. As illustrated in Fig. 2a, increasing 
the batch size from 8 to 64 generally led to improved test 
accuracy. A smaller batch size of 8 resulted in a slightly 
lower test accuracy (92.32%) compared to larger batch 
sizes. The model with a batch size of 64 achieved the high-
est test accuracy of 98.72%. Interestingly, Fig.  2b dem-
onstrates a clear trend of decreasing training time with 
increasing batch size. A larger batch size (64) resulted 
in a significantly shorter training time (10.888  min) 

Table 1  Model parameters of the proposed CNN model

a parameter refers to the weights and biases associated with the neurons in the 
network

Layer type Output shape Parametera

conv2d (Conv2D) (None, 126, 126, 32) 896

max_pooling2d (MaxPooling2D) (None, 63, 63, 32) 0

conv2d_1 (Conv2D) (None, 61, 61, 64) 18,496

max_pooling2d_1 (MaxPooling2D) (None, 30, 30, 64) 0

conv2d_2 (Conv2D) (None, 28, 28, 128) 73,856

max_pooling2d_2 (MaxPooling2D) (None, 14, 14, 128) 0

conv2d_3 (Conv2D) (None, 12, 12, 512) 590,336

max_pooling2d_3 (MaxPooling2D) (None, 6, 6, 512) 0

flatten (Flatten) (None, 18,432) 0

dense (Dense) (None,512) 9,437,696

dense_1 (Dense) (None, 64) 590,336

dense_2 (Dense) (None, 4) 32,832

Fig. 1  Test accuracies of different combinations of Dropout and L2 
Kernel Regularizer
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compared to a smaller batch size of 8 (19.945 min) for 50 
epochs. These observations suggest that increasing the 
batch size facilitates enhanced parallelization during the 
training process. Consequently, larger batch sizes (e.g., 
64) demonstrably achieve both superior test accuracy 
and reduced training times. However, it is crucial to con-
sider the limitations of available computational resources 
when selecting an optimal batch size.

Assessment of the model’s performance with batch size 64 
and different learning rates of Adam optimizer
A performance analysis of the model with different learn-
ing rates for Adam optimizer and their corresponding 
test accuracy has been presented in Fig. 3a, and it can be 
observed that the choice of learning rate is crucial for the 
training process. Experimenting with a range of learning 
rates (0.1–0.00001) revealed that excessively high rates 
(0.1 and 0.01) resulted in low test accuracies (23.75% 
and 24.91%, respectively). Conversely, an overly low rate 
(0.00001) also led to decreased accuracy (93.77%). The 
optimal learning rate was identified as 0.001, achieving 
high test accuracy comparable to 0.0001 and enabling 
faster convergence during training (Fig. 3b, c).

A CNN model was developed by combining the param-
eters, and it has shown promising results. Further, the 

proposed CNN was evaluated with the help of the con-
fusion matrix and ROC curve which are presented in 
Fig. 4a, b. The normalized confusion matrix (Fig. 4a), pre-
sented in terms of percentage, demonstrates exceptional 
classification accuracy across all classes (healthy: 100%, 
foot rot: 97.42%, advanced anthracnose: 97.82%, initial 
anthracnose: 99.33%). The model achieved an outstand-
ing average test accuracy of 98.72% with a low-test loss 
of 0.1060. Precision, recall, and F1-score further confirm 
the model’s effectiveness, with average values of 99.28%, 
97.65%, and 98.66% respectively (Fig.  4c). These excep-
tional results demonstrate the model’s robust capability 
for accurate disease classification in black pepper leaves.

Analysis of the model in comparison with different 
pre‑trained model
The proposed CNN model achieved exceptional per-
formance in classifying black pepper leaf diseases, sur-
passing the capabilities of pre-trained models on all 
evaluated metrics (precision, recall, F1-score, and accu-
racy). As shown in Table 2, pre-trained models (trained 
with a standard 80:10:10 data split for 50 epochs) exhib-
ited varying degrees of performance. Among the models, 
ResNet50 performed least in terms of all the performance 
metrics (65.13% test accuracy); DenseNet121 achieved 

Fig. 2  Effect of batch size in training a CNN model. a The column shows the test accuracies obtained with different batch sizes., b In the line graph, 
the y-axis indicates the training time required for training the model for 50 epochs for different batch sizes in the x-axis
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Fig. 3  Effect of different learning rates in training a model. a The overall accuracy of the model with different learning rates. b Training loss graph 
with different learning rate configurations. c Training accuracy graph of the model with different learning rate configurations
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Fig. 4  a The detailed breakdown of model having confusion matrix with true labels and predicted labels, b ROC curve of the proposed CNN model, 
and c F1 score, recall, and Precision of all the four classes
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the best performance among pre-trained models, with 
recall, precision, F1-score, and average accuracy of 
96.72%, 96.71%, 96.71%, and 96.72%, respectively. While 
analyzing the total number of weights and biases that can 
be learned or adjusted during the training process (train-
able parameters) of pre-trained models, VGG16 and 
VGG 19 required significantly less trainable parameters 
compared to other complex models (Additional file  1: 
Figure S2). However, our proposed model demonstrates 
exceptional performance, significantly outperforming all 
other compared pre-trained models, by achieving an out-
standing average test accuracy of 98.72% (Table 2). This 
superior performance suggests that a customized CNN 
model, specifically trained on a dataset of black pepper 
leaf diseases, can capture and extract features more effec-
tively compared to other pre-trained models. Thus, it 
emerges as a scientifically sound and dependable solution 
for classification tasks within this specialized domain.

Web application for black pepper disease identification
A web application titled “Black pepper Disease identi-
fication App” has been developed specifically for pep-
per farmers and extension personnels by utilizing the 
deployed CNN model. This platform enables users to 
upload images of black pepper leaves, which are then 
categorized into distinct classes: initial anthracnose, 
advanced anthracnose, foot rot, and healthy. A table 
showcasing the class name along with their respective 
class probabilities is presented while selecting the pre-
dict class option. This feature facilitates an understand-
ing of the model’s accuracy in predicting each class. The 
user interface of the web application has been provided 
in Fig. 5. The application can be accessed at the following 
link: https://​agsta​tkau.​shiny​apps.​io/​pepper_​disea​se_​app/.

Discussion
Through this study, DL technique, CNN has been applied 
for the classification and identification of black pep-
per leaf images, differentiating diseases such as foot rot, 
anthracnose, and healthy leaves. As DL represents the 
expansion of Traditional ML, it introduces additional 
depth to the models. This work aims to enhance the accu-
racy and efficiency of disease diagnosis of black pepper 
plants, contributing to the field of agricultural image 
analysis.

The CNN model used in this study is a DL architecture 
made up of a series of layers with different functional 
responsibilities, such as convolution, pooling, flattening, 
and fully connected layers. Although there are a num-
ber of CNN architectures as well as pre-trained models 
available, through this study, the best CNN algorithm for 
the identification of two major diseases of black pepper 
has been developed. The hyperparameters influencing 

Table 2  Comparative analysis of the performance of pre-trained 
models and proposed models’ precision, recall, F1 score, and 
accuracy

Sl No Models Precision Recall F1 score Accuracy

1 VGG16 92.64% 92.55% 92.54% 92.55%

2 ResNet50 65.52% 65.13% 64.9% 65.13%

3 VGG19 91.38% 91.16% 91.1% 91.16%

4 MobileNet V2 96.07% 96.05% 96.05% 96.05%

5 DenseNet121 96.71% 96.72% 96.71% 96.72%

6 InceptionV3 91.44% 91.32% 91.29% 91.32%

7 Xception 92.01% 91.94% 91.86% 91.94%

8 ResNet50V2 93.31% 93.16% 93.19% 93.16%

9 Proposed model 99.28% 97.65% 98.66% 98.72%

Fig. 5  The user interface of developed black pepper disease identification App

https://agstatkau.shinyapps.io/pepper_disease_app/
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the image-based CNN model were optimized to develop 
a resilient CNN-based model capable of accurately and 
precisely classifying foliar images into various black pep-
per diseases.

The original dataset, comprising 2786 images, has 
been augmented to generate a dataset comprising 18,234 
images by employing various image augmentation 
techniques. These include rotation, flipping, skewing, 
brightness adjustment, and a combination of the afore-
mentioned techniques. The model was trained using the 
augmented black pepper image datasets.

During the CNN model development, a configuration 
featuring four blocks of convolution and a max-pool-
ing layer showed a higher test accuracy. Interestingly, 
a model with a smaller strength of kernel regularizer 
(0.001) and no dropout rates performed efficiently com-
pared to all the combinations of dropouts and L2 regu-
larizers. Optimal training parameters were identified 
with a batch size of 64, with the Adam optimizer having a 
learning rate of 0.001. This configuration achieved higher 
accuracies across all the sets with minimal training time 
(10.888 min). The comprehensive CNN model, incorpo-
rating these parameters, achieved a training accuracy of 
99.98%, validation accuracy of 99.88%, and test accuracy 
of 98.72%.

Further, the developed CNN model has been compared 
with several state-of-the-art pre-trained models such as 
VGG16, VGG19, ResNet50, ResNet50V2, MobileNet V2, 
DenseNet121, InceptionV3, and Xception, in the task of 
classifying images of black pepper leaves. Each model 
was initially pre-trained with ImageNet weights and 
evaluated using a dataset of black pepper leaf images, 
comprising training, validation, and testing subsets. To 
ensure a fair and objective comparison across the differ-
ent architectures, all models were trained with consistent 
hyperparameters: a batch size of 64, the Adam optimizer 
with learning rate = 0.001, and 50 epochs. Performance 
metrics such as accuracy, precision, recall, and F1 score 
were obtained from the confusion metrices. All CNN 
models obtained excellent accuracy during the training 
phase. These results affirm the practicality of CNNs for 
the classification of black pepper leaf images. Out of the 8 
CNN architectures employed, namely, VGG16, VGG19, 
ResNet50, ResNet50V2, MobileNet V2, DenseNet121, 
InceptionV3, and Xception in this study, DenseNet121 
showed the highest overall accuracy equal to 96.71% on 
the test dataset. In our study, both of the ResNet50 archi-
tectures showed lower accuracy, precision, recall, and F1 
scores compared to other models. Notably, DenseNet121 
displayed remarkable precision equal to 96.71% and 
recall equal to 96.72%, which was the highest among 
considered CNN architectures. Swaminathan et  al. 
(2021) achieved similar observations on an automated 

detection technique using CNN models on 35,779 images 
from the Plant Village dataset to classify 29 different dis-
eases across seven plants. They found that DenseNet121 
achieved an average accuracy of 94.96%. Rohith and 
Kumar (2020), in their study on remote sensing signature 
classification of agriculture detection using deep CNN, 
found that DenseNet121 architecture outperformed 
ResNet50, VGG16, VGG19, and other models, alike to 
our findings. Similarly, the observation made by Gehlot 
and Saini (2020) on disease detection with the help of 
CNN in tomato leaves is similar to our result. They noted 
that DenseNet121 shows a higher accuracy compared to 
VGG16 and other models.

While comparing the present study with the already 
existing research works in this direction, it can be found 
that Khew et  al. (2021) constructed a customized CNN 
and compared it with VGG16 and InceptionV3 to iden-
tify two diseases such as red rust and sooty mold and 
six nutritional disorders of black pepper, using a data-
set of 947 leaf images. A classification sensitivity rate of 
0.98 was obtained for the customized model, surpass-
ing the other two models. Similarly, Kini et  al. (2024) 
employed a CNN to classify various leaf diseases, includ-
ing anthracnose, slow wilt, early stage of phytophthora, 
phytophthora, and yellowing as well as healthy leaves. 
The CNN model, pre-trained on the ImageNet dataset, 
was tested on 1800 distinct in-field images of all classes 
and achieved an average accuracy of 99.1–99.5% across 
the InceptionV3, GoogleNet, SqueezeNet, and ResNet18 
models. In a study similar to the present one, Chen 
et al. (2023) employed CNN to classify the black pepper 
images based on symptoms or malnutrition indicated on 
leaves using a dataset of 1043 image samples. Their study 
compared a customized CNN model with EfficientNet-
B0, MobileNet-v2, ResNet-V2-50, and DenseNet121 as 
pre-trained models, reporting classification accuracy 
rates of 85.0%, 88.0%, 88.0%, 86.0%, and 85.0%, respec-
tively, on the test set. Hence, from this experiment, it can 
be shown that the developed model has shown better or 
comparable overall accuracy than the above-mentioned 
findings.

In the future, the proposed model can be extended to 
more disease identification of black pepper such as slow 
decline, mottle virus disease, etc. A comprehensive dis-
ease identification system could be implemented to 
address the variation in symptoms observed among dif-
ferent black pepper varieties, which is attributed to host–
pathogen interactions.

Conclusion
In this study, a Deep Convolutional Neural Network-
based approach has been proposed to automatically 
identify the images of black pepper diseases along with 



Page 9 of 13Sreethu et al. Phytopathology Research            (2025) 7:21 	

healthy leaves. The dataset consisted of images of three 
disease classes (initial anthracnose, advanced anthrac-
nose, and foot rot) as well as healthy leaves. To help the 
model become more broadly applicable to actual envi-
ronmental scenarios, the collected dataset contains 
images with different backgrounds comprising actual 
field conditions. Addressing class imbalances, we aug-
mented original images to 18,234 by employing rotation, 
flipping, skewing, and brightness enhancement methods. 
Our customized CNN architecture achieved high classi-
fication accuracy, precision, recall, and F1-score (98.72%, 
99.28%, 97.65%, and 98.66%, respectively) on a separate 
test dataset. The model effectively extracted essential 
features from disease symptoms, demonstrating robust 
performance in predicting disease classes in data not 
included in the training set without conventional image 
preprocessing. To validate our model’s viability, we con-
ducted a comprehensive comparison with state-of-the-
art models trained using transfer learning techniques. 
Results show that our proposed model outperformed 
other pre-trained models in classifying pathological fea-
tures of diseases. This empirical analysis suggests that 
our CNN models may effectively learn both high-level 
and low-level features from the input images, leading 
to impressive results for the classification of the dataset 
under consideration.

Methods
Black pepper dataset preparation
In this study, we utilized a comprehensive dataset of 
2786 digital photographs of black pepper leaves cap-
tured under field conditions. In addition to images with 
white and black backgrounds, our dataset also includes 
images captured under complex field conditions, featur-
ing backgrounds with mud, plant parts, debris, and other 
environmental elements. By including a diverse dataset in 
our training, validation, and testing phases, we ensured 
that the model was exposed to a variety of conditions, 
enhancing its generalizability and practical applicabil-
ity. The images of the black pepper leaves were collected 
from Pepper Research Station, Panniyur; Kannur, and 
other black pepper growing fields in Wayanad, Kasara-
god, Kollam, Malappuram, and Thiruvananthapuram 
districts of Kerala, India. The dataset encompasses four 
classes: healthy leaves, leaves with initial and advanced 
stages of anthracnose, and leaves infected with foot rot 
for a more precise classification of diseases.

To capture images under varying real field conditions, 
photographs have been collected during both summer 
and rainy seasons following the procedures outlined by 
Haque et  al. (2022). A diverse range of image-capturing 
devices has been utilized to increase dataset variabil-
ity. These devices included a Nikon Z50 camera with a 

16–50  mm lens and a 21.5 MP CMOS sensor, along 
with various smartphone cameras from Samsung (Gal-
axy A20s with 13 MP), Xiaomi (Redmi Note 9 Pro with 
64 MP, Redmi 9 with 13 MP), Realme (9 Pro + with 
50 MP), and Vivo (Y55s with 13 MP).With the help of 
plant pathologists, the gathered dataset of black pep-
per leaves, has been divided into four classes namely, 
“advanced anthracnose”, “initial anthracnose”, “foot rot”, 
and “healthy” for this study. Sample photographs of each 
class are presented in Fig. 6 for visualization.

Data preparation
Image preprocessing is one of the important stages in an 
image classification model since the captured images may 
vary in illumination, noises, sizes, background etc. There-
fore, applying preprocessing techniques such as resizing, 
rescaling, and augmentation is necessary to accelerate 
training procedures, which minimizes the computational 
cost, and improves classification accuracy (Pal and 

Fig. 6  Sample photographs of the black pepper dataset are 
presented in a (1) Initial anthracnose, (2) Advanced anthracnose, (3) 
Foot rot, and (4) Healthy. b The images represent foot rot disease 
with various backgrounds, including other plant parts, soil, white, 
and black backgrounds
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Sudeep 2016). In this experiment, the actual images are 
resized to 128 × 128 pixels (resolution) and normalized 
into the range of 1 to 0 by dividing the pixel values by 255 
to avoid the disturbance occurring due to the multiplica-
tion of small valued weights to large integer pixel values 
(Too et al. 2019).

The model’s performance could be adversely affected 
by a varying number of images in each class. Artificial 
images are created to significantly increase the dataset’s 
volume and variability in order to prevent the imbalance 
problem. In this research, the augmentation of image 
datasets involves distinct classes being subjected to vari-
ous transformations, resulting in the generation of a total 
of 18,234 images. Augmentation techniques comprised 
image rotation, vertical flipping, horizontal flipping, hor-
izontal-vertical flipping, brightness adjustment, skewing, 
and combinations of rotation and flipping. These trans-
formations were implemented using OpenCV (Open 
Source Computer Vision) library. In Additional file  2: 
Table  S1 presents the number of images in each class, 
including both original and augmented images generated 
through augmentation techniques.

The performance of the models was evaluated by calcu-
lating the accuracies of the model in each configuration. 
First, the whole dataset was divided into three partitions-
training, validation, and testing sets of 80:10:10 were used 
for conducting a performance evaluation of the model. 
Splitting of the dataset was carried out by a Python script 
called ‘splitfolders’. This Python script splits the dataset 
into 3 sets with different configurations. In this study, all 
the estimation and development procedures were per-
formed using Python. The model was implemented on 
the Spyder environment by using Keras, a deep learn-
ing API for Python, built on top of TensorFlow, which 
is a Python-based, free, open-source machine learning 
platform. All the experiments were conducted on the 
NVIDIA GeForce RTX 3050 Ti Laptop GPU. The speci-
fications of hardware configuration are provided in the 
Additional file 2: Table S2.

Methodology
Convolutional neural network
Convolutional Neural Networks (CNNs) are inspired by 
the workings of the brain and how neurons collaborate 
themselves for the recognition of patterns and analysis 
of input audio-visual information. They are supervised 
DL techniques that have revolutionized a wide range of 
image-based pattern recognition and computer vision 
applications (Francis and Deisy 2019). They perform 
automatic feature extraction and require less pre-pro-
cessing of data  than machine learning techniques, lead-
ing to improved performance and accuracy.

A CNN consists of an input and an output layer, as well 
as multiple hidden layers. The hidden layers of a CNN 
are made up of convolutional layers, pooling layers, fully 
connected layers, and normalization layers mainly used 
for image processing and image recognition (LeCun et al. 
2015; Yao et  al. 2019; Subeesh et  al. 2022). It uses two 
operations called ‘convolution’ and ‘pooling’ to reduce an 
image into its essential features, and it uses those features 
to understand and classify the image.

Transfer learning
Transfer learning in DL refers to using a pre-trained net-
work for a new task. In the fields of computer vision and 
DL, transfer learning has become particularly popular 
since it can successfully train a network with minimal 
data and can achieve excellent precision. Through the 
use of prior information from one task, a machine can 
increase its generalization about another through trans-
fer learning. The collected black pepper dataset has been 
trained on available pre-trained models using a transfer 
learning approach trained on the well-known ‘ImageNet’ 
dataset (Szegedy et al. 2016).

Performance metrics
In every experiment, the models were evaluated using a 
separate 10% unseen testing dataset following training 
and validation. Next, in order to determine the models’ 
disease-wise classification performance, we built confu-
sion matrices and ROC curves. A confusion matrix is a 
two-dimensional table with two dimensions, “Actual” 
and “Predicted,” and its dimensions contain the results of 
the comparison between the predictions and the actual 
class labels. The four parameters of the confusion matrix 
including:

•	 True positive (TP): This is a case in which the image 
is predicted to be positive and true.

•	 True negative (TN): This is a case in which the image 
is predicted as negative, and it is true.

•	 False positive (FP): This is a case in which the image 
is predicted positive, and it is false (type I error).

•	 False negative (FN): This is a case in which the image 
is predicted negative, and it is false (Type II error).

•	 Classification Accuracy (CA): It is averaged among 
all the classes, and it measures the overall perfor-
mance of the model.

•	 Precision: It measures the percentage of predicted 
positives that are actually positive. The fraction of 
true positives to the sum of TP and FP.

Accuracy rate =
TP+ TN

TP+ FP+ TN+ FN
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•	 Recall: Measures the percent of actual positive that 
are predicted as positive. It is the fraction of TP from 
the total amount of TP and FN.

•	 F1-score: Measures the robustness of the model. It is 
the harmonic mean of precision and recall.

•	 Receiver Operating Characteristic (ROC) curve: It 
plots the True Positive Rate (TPR) and False Positive 
Rate (FPR) across varying thresholds.

Web application development
To develop a web application for disease detection, 
we utilized the Shiny package developed by the Rstu-
dio company, written in the R programming language. 
This package supports the development of interactive 
web applications. The User Interface (UI) was designed 
using the ‘fluidPage’ function to create a flexible layout, 
and include various input elements, such as file upload 
buttons and sliders, for image data input. The server 
function was developed to manage the logic and com-
putations, including the loading and preprocessing of 
images, the application of the developed pre-trained deep 
learning model for disease classification, and the genera-
tion of output results. The Shiny app effectively integrates 
the UI and server components, providing an interactive 
and user-friendly interface (Jia et al. 2022). The applica-
tion was deployed on shinyapps.io, enabling users to 
detect diseases in their crops online by uploading images 
and receiving immediate diagnostic results.
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