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Abstract 

The Fusarium oxysporum species complex (FOSC), comprising a multitude of soil borne fungal pathogens, represent 
a major group of plant invaders that cause vascular wilt diseases of crops worldwide. Although sexual reproduction 
is nebulous in the FOSC, horizontal gene transfer (also well known as trans‑kingdom) may contribute to the observed 
diversity in pathogenic strains. Concerning the safety and costly process of generating genetically modified crops, 
a plant‑disease management strategy not reliant on transgenic approaches remains the most economic and envi‑
ronmental‑friendly option. Here, we highlight the current scenario via beginning with F. oxysporum formae speciales 
and races as well as caused Fusarium wilt disease in field. Subsequently, based on the mechanisms by which small 
RNA (sRNA) acts in gene silencing, especially in bidirectionally trans‑kingdom sRNA silencing between F. oxyspo-
rum and their hosts in the development of disease, we summarize technological breakthroughs like Spray‑Induced 
Gene Silencing (SIGS) technology in the developing and applying to protect crops from Fusarium wilt disease. Given 
that SIGS has been developed and recently applied in controlling crop Fusarium wilt diseases, we propose a potential 
prevention and control system to exploit crop Fusarium‑vasculature interaction leading to further study trans‑king‑
dom sRNA silencing.
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Background
Global crop production is severely challenged by a vari-
ety of fungal diseases, of which caused by soil borne 
fungal pathogenic Fusarium oxysporum species com-
plex (FOSC) is one of the most destructive (Wade 1929; 
Haware et  al. 1978; Smith et  al. 1999; Fall et  al. 2001). 
Rather than separate taxa, host-specific strains of F. 
oxysporum are treated such biologic forms as variants of 
a single species following assigned to formae speciales (f. 
sp.). The forma speciales designation had no taxonomic 

standing but served to facilitate communication among 
plant pathologists (Snyder and Hansen 1940). Presently, 
F. oxysporum occurs as pathogenic (plant, animal, and 
human) and non-pathogenic strains. Following entry of 
plant root, Fusarium wilt pathogen colonize in the vascu-
lar system to destroy plant root-water continuum result-
ing in wilting symptoms and death of plant eventually 
(Schäfer 1994).

Since small RNA (sRNA)-mediated RNA interference 
(RNAi) discovered as a conserved regulatory mecha-
nism in almost all eukaryotes, trans-kingdom RNAi is 
convinced playing a critical role in host pathogen inter-
actions (Knip et  al. 2014; Huang et  al. 2019; Liu et  al. 
2016). Recently, it is discovered that fungus-derived 
natural trans-kingdom sRNAs are transmitted into plant 
hosts during infection, functioning as RNA effectors 
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to suppress host immunity. On the other hand, host-
derived natural trans-kingdom sRNAs are also confirmed 
to transmit from host plants into the fungal pathogens 
(Weiberg et  al. 2013; Zhang et  al. 2016; Ji et  al. 2021). 
Intriguingly, these discoveries prompt the development 
of Spray-Induced Gene Silencing (SIGS) for plant dis-
ease management. As a non-GMO (genetically modified 
organisms) alternative to Host-Induced Gene Silencing 
(HIGS), SIGS attenuates pathogen infection by topical 
application of dsRNA or sRNA molecules to silence path-
ogen virulence-related genes (Song et al. 2018; Qiao et al. 
2021; Ouyang et al. 2023).

This review synthesizes information from studies of 
FOSC that pertain to its activities as the cause of field 
crop Fusarium wilt diseases to highlight important gaps 
in our knowledge. Important considerations for gener-
ating successful SIGS strategies against FOSC will also 
be emphasized as a powerful and eco-friendly method 
for crop protection from Fusarium wilt diseases. These 
include characteristics of effective gene targets and 
their pathways, and new insights into sRNAs properties 
impacting on cellular uptake and silencing efficiency. 
The extensive literatures on the genetic and biochemical 
interplay between host and FOSC is beyond the scope of 
this review. The interested reader can find many useful 
points to this rapidly expanding body of knowledge.

F. oxysporum formae speciales and races
The latest review recorded F. oxysporum formae spe-
ciales  and races that many scientists still refer to dates 
back to thirty years (Buxton 1957; Armstrong and Arm-
strong 1981; Correll et  al. 1986).  To date, F. oxysporum 
comprises more than 200 host-specific strains (formae 
speciales), including plant pathogens, animal pathogens, 
and nonpathogens, many of which have worldwide dis-
tributions (O’Donnell et  al. 2009; Geldner 2013). From 
a practical point of view, pathogenic  FOSC  can invade 
perennial and annual plants, including mostly land-based 
as well as many aquatic plants. F. oxysporum strains lead 
to either wilts or root/crown rots on economically main 
field crops (e.g. cotton, banana, and soybean), important 
market garden crops (e.g. tomato, onion, and melon), 
grain legumes (e.g. cowpea, chickpea, and  faba bean), 
ornamental crops (e.g. cyclamen, orchids, and  gerbera), 
as well as and even on broom or rapewitchweed (e.g. 
parasitic plants, and  weeds) (Abawi and Lorbeer 1972; 
Brayford 1996; Olivain and Alabouvette 1999; Gao et al. 
2021).

Intriguing individual strains display developing selec-
tive pathogenicity to a relative narrow range of host 
plants, which is defined as a forma speciales. For example, 
strains responsible for  Fusarium  wilt of tomato belong 
to the  forma speciales lycopersici. Actually, the  concept 

‘forma speciales’ is first formulated early to distinguish 
strains of  Puccinia graminis  Pers. similar morphologi-
cal characteristics but different host ranges (Stakman 
1913; Edel-Hermann and Lecomte 2019; Favre et  al. 
2023). Among known forma speciales, more than 100 for-
mae speciales  are well documented. The host range of 
these  formae speciales  consists of plants belonging to 
45 families (Asteraceae, Cucurbitaceae, Fabaceae, and 
Solanaceae are the most represented) (Poli et  al. 2012; 
Pastrana et al. 2017). More than 30  formae speciales are 
considered as insufficiently documented. These  patho-
gens  isolated from diseased plants and assigned to 
a forma speciales without confirming their pathogenicity, 
or, host specificity of these formae speciales are not ana-
lyzed yet (Armstrong and Armstrong 1981; Gordon et al. 
2015). Furthermore, 58 host plant species in the literature 
are recorded and described as susceptible to  F. oxyspo-
rum  but whose  forma speciales  has not been character-
ized so far. Such a wide geographical distribution and 
wide host spectrum confirms the adaptability of FOCS to 
the diverse biotic and abiotic environmental conditions 
encountered worldwide (Steinberg et al. 2016; Edel-Her-
mann and Lecomte 2019).

However, continuously increasing diversity 
in  FOCS  and within  formae speciales  may be revealed 
over time with the new plant genotype derived from 
breeding. This growth may reflect a worrying trend, as 
more and more new varieties are described as special 
varieties related to the resurgence of diseases in market 
horticultural and ornamental crops, as well as large-
scale crops. For example, many formae speciales are well 
known to be polyphyletic obstructing to identify specific 
molecular markers (Baayen et al. 2000; Fourie et al. 2009; 
Koyyappurath et  al. 2015). Meanwhile, both soil-borne 
and endophytic non-pathogenic varieties of F. oxysporum 
exhibit high genetic variability and are closely related 
to pathogenic isolates  (Edel et  al. 2001;  Inami et  al. 
2014; Imazaki and Kadota 2015). For this, desirable tools, 
such as molecular markers, are urgently developed to 
detect the presence and activity of pathogenic FOCS iso-
lates, as well as discriminate between races and  formae 
speciales.

Factors influencing wilt diseases caused by F. 
oxysporum
Pathogenic F. oxysporum  strains are responsible for two 
typical types of symptoms, vascular wilting and rotting in 
roots (without reaching the vascular system). According 
to the Committee on Standardization of Common names 
for plant diseases (http:// www. apsnet. org), when patho-
gens penetrate the host roots to reach the xylem vessels, 
F. oxysporum  causes vascular wilting which colonizes 
upwards, resulting in progressive yellowing and wilting 

http://www.apsnet.org
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of the plant, associating with several disease names as 
Fusarium yellows, Fusarium blight, and Fusarium wilt. 
Meanwhile, diseases with rotting symptoms are called 
basal rot, Fusarium stem rot, or crown and root rot 
(Jarvis and Shoemaker 1978; Olivain and Alabouvette 
1999). However, some plants, for example tomato, can be 
attacked by formae speciales lycopersici and radicis-lyco-
persici causing vascular wilting and root rot, respectively 
(Vakalounakis 1996).

Most of the Fusarium forma speciales are considered 
as hemi-biotrophic plant pathogens, killing host by pro-
ducing reactive oxygen species (ROS), secreting cell wall 
degrading enzymes (CWDE), and phytotoxic molecules 
(Desmond et  al. 2008; Fones et  al. 2020). During the 
course of invasion, phytopathogenic fungi are perceived 
through plant cell surface receptors that recognize path-
ogen-associated molecular patterns (PAMP), secreted by 
pathogens or released by the action of lytic enzymes dur-
ing the interaction with the host. PAMPs (including but 
not limited phospholipomannan, ß-glucans, mannopro-
teins, and chitin) further activate the first line of defense 
well-known as PAMP-triggered immunity (PTI) in plants 
(Jones and Dangl 2006; Kanyuka and Rudd 2019; Pier-
zgalski et  al. 2021). Phytopathogenic fungi evolve to 
counteract PTI through the production and secretion of 
molecules called effectors, which initiate the second line 
of plant defense called effector-triggered immunity (ETI) 
through the interaction with host intracellular receptors 
(Jones and Dangl 2006). In most case, investigation of 
the function of effectors is impeded by the redundancy 
of homologous genes, therefore, the most promising 

alternative is to isolate these effectors to uncover new 
metabolites and proteins associated with pathogenicity 
or virulence (Müller et al. 2008).

Fungal virulence is termed as a capacity causing dam-
age to the host masking any obvious phenotype (wilt syn-
drome). Thus, factors influencing wilt diseases caused 
by  F. oxysporum are any molecule that enhances the 
pathogenicity of the pathogen by interfering with host 
particular functions. These virulence factors (VF) can be 
categorized according to the chemical nature, the acting 
site, and the interaction style. Basically, VF can be classi-
fied into two large groups: low molecular weight metab-
olites (e.g. PAMPs) and proteins (e.g. effectors) (Kraft 
1994; Ibrahim et  al. 2021). Moreover, nitrogen-contain-
ing metabolites, such as ammonium or glutamine, play 
as critical signal maintaining the expression level of vir-
ulence genes in F. oxysporum (Wong et al. 2008; López-
Berges et al. 2010). Specifically, secreted in xylem (SIX), 
a group of small effector proteins in the xylem secreted 
by F. oxysporum, are well documented contributing 
to F. oxysporum virulence. So far, fourteen SIXes have 
been verified, with no surprise, formae speciales vary in 
SIX protein profile and respective gene sequence (Rep 
et  al. 2004; Maldonado Bonilla et  al. 2018; Adusei-Fosu 
and Dickinson 2019; Lyons et  al. 2019). The main VFs 
reported to date specially for  F. oxysporum  f. sp.  lyco-
persici are summarized in Table 1. All listed VF are from 
species F. oxysporum f. sp. lycopersici, with exception SIX 
from f. sp. lycopersici, cubense, conglutinans, and melonis 
respectively, and FoEG1 from f. sp. lycopersici and vasin-
fectum  respectively. Among these VF, PGs, Tomatinase, 

Table 1 Main proteins reported as VF from F. oxysporum f. sp. lycopersici 

VF Annotation Host Biological function References

PGs Poligalacturonases Tomato Degradation of pectin in host plant cell 
walls

He et al. (2023), Powell et al. (2000)

Tomatinase Glycosidase Tomato A saponin with antifungal activity cleaving 
Alpha‑tomatine into aglycon tomatidine 
and tetrasaccharide lycotetraose

Carere et al. (2017), Pareja‑Jaime et al. 
(2008), Ito et al. (2004)

FoRnt2 Ribonuclease T2 Tomato RNA degradation in host plant Qian et al. (2022b)

FoMep1 Metalloprotease Tomato Cleaving host plant chitinases by removing 
the chitin binding site

Jashni et al. (2015)

FoAPY Aminopeptidase Y Tomato Altering the abundance of host plant 
proteins

Pautot et al. (2001), Qian et al. (2022a)

FoSep1 Serine protease Tomato Cleaving host plant chitinases by removing 
the chitin binding site

Jashni et al. (2015)

SIX Secreted in Xylem proteins Tomato, banana, 
cabbage, cucum‑
ber

Effector to Enhance pathogen virulence 
and suppresses cell death during plant‑
pathogen interaction

Rep et al. (2004), Gawehns et al. 2014, Ma 
et al. 2015, Maldonado Bonilla et al. 
(2018), Widinugraheni et al. 2018, Adusei‑
Fosu and Dickinson (2019), Lyons et al. 
(2019), Jangir et al. 2021

FoEG1 Glycoside hydrolase Tomato, cotton Cellulase activity to trigger the hypersensi‑
tive response

Zhang et al. (2021)
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FoMep1, FoSep1, and FoEG1 are located in the apoplast, 
FoRnt2, FoAPY, and SIX are translocated into the host 
cell cytoplasm. However, the functional annotation of 
these VF (or proteins) is not full addressed yet and it is 
unknown how they contribute to virulence.

Trans‑kingdom sRNA silencing in Fusarium 
oxysporum‑plant interactions
Small RNAs (sRNAs) are 20–30 nucleotide (nt)-long 
non-coding RNA molecules, which are divided into two 
major classes: microRNAs (miRNAs) and small interfer-
ing RNAs (siRNAs). Most miRNAs are 18–24 nt long 
and derived from single-stranded RNA precursors with 
imperfectly base-paired hairpin structures. sRNAs are 
universally distributed in all kingdoms of life from bac-
teria, archaea to various eukaryotic lives. It is well estab-
lished that sRNAs contributes to almost all eukaryotic 
cellular processes, which have not ceased to surprise us 
throughout the last three decades regarding their func-
tional and compositional diversity (Grosshans and Fil-
ipowicz 2008; Carthew and Sontheimer 2009; Guo et al. 
2019; Chen and Rechavi 2022). Since the first miRNA 
reported in Caenorhabditis elegans in 1993, research-
ers have begun to explore the generation mechanism 
and biological functions of microRNAs, as well as the 
key role in gene expression regulation (Lee et  al. 1993; 
Reinhart et al. 2000). The Nobel Assembly at Karolinska 
Institutet awarded the 2024 Nobel Prize in Physiology or 
Medicine jointly to scientists Victor Ambros and Gary 
Ruvkun ‘for their discovery of microRNA and its role in 
post-transcriptional gene regulation’. The groundbreak-
ing discovery reveals an entirely new dimension to gene 
regulation, meanwhile, inspires the wide application in 
plant protection.

RNA interference (RNAi, or RNA silencing) mecha-
nisms have been studied comprehensively in different 
organisms in many biological processes (Hannon 2002; 
Baulcombe 2004). Bidirectional transmission of sRNAs 
between host plants and fungal pathogens has been doc-
umented to influence host-fungus interactions, which 
provided direct evidence of natural trans-kingdom RNAi, 
although fungal RNAi mechanisms still require further 
investigation (Wen et  al. 2023). In virus-induced gene 
silencing (VIGS), the siRNA specificity determinant is 
derived from the viral RNA. Meanwhile, emerging body 
of evidence show that plants and filamentous micro-
organisms employ RNAi to influence each other, which 
lead to host induced gene silencing (HIGS) affecting gene 
expression in fungal. However, filamentous organism-
induced gene silencing (FIGS) acts in the opposite direc-
tion (Baulcombe 2015).

Recently, several studies illustrated that spraying dou-
ble-stranded RNAs (dsRNAs)/sRNAs on plant surfaces 

confers efficient crop protection through targeting 
essential pathogen genes (Koch et  al. 2013, 2016; Wang 
et  al. 2016; Qiao et  al. 2021; Ouyang et  al. 2023). Thus, 
a termed spray-induced gene silencing (SIGS) is known 
as a powerful, fast, sustainable, and environmenta- 
friendly strategy to circumvent the problems in creat-
ing GMOs (Wang and Jin 2017). Previously, we explored 
the RNAi-based SIGS strategy using direct applica-
tion of  FolRDR1-dsRNA to protect tomato wilt disease 
caused by F. oxysporum  f. sp.  lycopersici  (Fol). Our data 
alternatively demonstrated that  FolRDR1  mediated the 
pathogen development and pathogenicity. Both  Fol  and 
tomato efficiently took up  FolRDR1-dsRNA from the 
environment through spraying on tomato seedling leaves. 
Further, exogenous application of FolRDR1-dsRNAs sig-
nificantly alleviated the progress of tomato wilt disease 
symptoms. More than intriguing, the fluorescence sig-
nals of FolRDR1-dsRNAs were dominantly localized in 
the host vascular bundles where microconidia spore are 
produced and disseminated. Employing the vascular bun-
dles as transport corridor, endogenetic hypha spreading 
to above ground tissues is critical for disease progression 
for Fol (Ouyang et al. 2023). Similarly, spraying applica-
tion of 791 nt noncoding CYP3-dsRNA alleviates the 
growth of pathogen using the agronomically barley—F. 
graminearum pathosystem. After uptake via the plant 
vascular system by the pathogen, CYP3-dsRNAs are pro-
cessed into small interfering (si)RNAs by fungal DICER-
LIKE 1 (FgDCL-1), then target three fungal ergosterol 
biosynthesis genes (CYP51A, CYP51B, CYP51C) in soil-
borne pathogen F. graminearum (Koch et al. 2016). These 
successful SIGS studies show that such specific Fusarium 
pathogen gene-targeting RNAs represents a new gen-
eration of environmentally-friendly fungicides to control 
vascular wilt disease (Fig. 1).

Given the ease of design, high specificity, and appli-
cability to diverse pathogens, and environmente-
friendly compared with traditional fungicides and 
creating GMOs, SIGS immediately attracts the atten-
tion of researchers as a new plant protection strategy. To 
serve as an efficient ‘RNA fungicides’, a reasonable dura-
tion of efficacy is concerned and desired for the SIGS 
strategy. The most challenge of the SIGS technology is 
the relative instability of RNAs in the natural environ-
ment. Strikingly, application strategies can be improved 
by inorganic/organic nanoparticles as carriers to stabilize 
the RNAs and thus increase the strength and duration of 
plant protection (Joga et al. 2016; Christiaens et al. 2018; 
Schwartz et  al. 2020; Martinez et  al. 2021). However, 
there are still several questions need to be addressed, (i) 
what are the optical properties (e.g., length, secondary 
structure formation, etc.) of dsRNA fragment for nano-
particles? (ii) how to avoid off-target silencing which 
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may lead to biosafety concerns? (iii) what’s the balance of 
RNA uptake efficiency between host plant and pathogen?

Conclusion: SIGS in F. oxysporum infections—
Where do we stand?
Devastating vascular wilt caused by  F. oxysporum, cur-
tailing the production of economically important crops 
worldwide, has become a menace to farmers. The emer-
gence of Spray-Induced Gene Silencing (SIGS) is a native 
strategy for crop protection utilizing exogenously applied 
non-coding RNA (double-stranded RNA or sRNA) to 
specifically reduce pathogenic target gene expression. 

Once a disease-resistant phenotype has been developed 
with SIGS against an accurate target, further optimiza-
tion of the applied RNA sequence may further increase 
efficacy (Sharath Chandra et al. 2019; Kweon et al. 2022). 
The efficiency of non-coding sRNA-mediated gene 
silencing depends on uptake, processing to siRNAs, 
accessibility of the target region of the gene, and forming 
RNA-induced silencing complex (RISC) together with a 
member of the Argonaute (AGO) protein family (Reyn-
olds et al. 2004; Lo Presti et al. 2015; Fakhr et al. 2016).

Fig. 1 SIGS strategy to protect crops from the invasion of fungal pathogens F. oxysporum. Sprayed exogenous dsRNAs/sRNA can be taken directly 
into Fusarium cells on the plant vascular system or by first passing through the cells of the plant. In this case, the dsRNAs/sRNA are translocated 
through vascular system before delivery to the fungal hyphae or conidia. Alternatively, the exogenous processed and/or unprocessed dsRNA, 
as well as sRNA, are taken into the fungal cell either by haustorial feeding, endocytosis, or vesicle trafficking (the certain entry mechanism of dsRNA/
sRNA into the fungal cell still to be determined). In Fusarium cell, the fungal RNAi machinery is guided by siRNAs derived from the exogenous 
dsRNA to mediate particular target gene silencing, finally leading to impair the pathogenicity of Fusarium pathogens. dsRNAs are processed 
by DCL family to produce siRNAs and subsequently loaded into the AGO complexes to induce targeted gene silencing (Hannon 2002; Baulcombe 
2004; Koch et al. 2016; Ouyang et al. 2023). DCL, Dicer‑like protein; AGO, Argonaute protein; Con, conidia; Grey dots, dsRNAs/sRNA. Red arrows, 
the moving direction of pathogens. Blue arrows, the moving direction of dsRNAs/sRNA
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Since B. cinerea is found to take up exogenous dsR-
NAs naturally, SIGS technology has been developed for 
crop protection against fungal pathogens (Wang et  al. 
2016; Wang and Jin 2017). In December 22, 2023, the 
U.S. Environmental Protection Agency (EPA) has reg-
istered biopesticide products containing the new active 
ingredient Ledprona (https:// www. epa. gov). Ledprona 
is a new type of pesticide that relies on RNA interfer-
ence (RNAi) used to protect against disease in plants 
and animals. Ledprona is a sprayable dsRNA product 
that targets the Colorado potato beetle (CPB), a major 
pest of potato crops, to kill the pest by ‘silencing’ the 
CPB gene needed to produce the PSMB5 protein. This 
RNAi-based pesticide is the first SIGS-dsRNA pesti-
cide in the world allowed to be used commercially and 
sprayed on plants (Rodrigues et  al. 2021; Pallis et  al. 
2022). With the examples discussed in this review, 
it is conceivable that SIGS-based technology can be 
deeply elucidated and exploited to further understand 
crop Fusarium wilt disease. Therefore, the interaction 
of plants and vascular pathogens is an ideal model for 
the study of trans-kingdom RNAi, which are relatively 
more diverse and complex than oomycetes, bacteria, 
and viruses. Comparative pathogen genomics and deep 
sRNA sequencing based on microbiome projects would 
promote exploration of key trans-kingdom sRNAs 
involved in plant—F. oxysporum interactions, providing 
new efficient targets for crop protection tools such as 
SIGS.
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