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METHODOLOGY

Targeted isolation of biocontrol agents 
from plants through phytopathogen co-culture 
and pathogen enrichment
Bozhen Wang1†, Li Li2†, Yuheng Lin1†, Danyu Shen1, Xiaolong Shao1, Caihong Zhong2* and Guoliang Qian1*   

Abstract 

In a long-term symbiotic relationship between plants and pathogens, plants have evolved to harbor beneficially 
endophytic microbiomes, thereby conferring them the ability to resist infection by pathogens. This prompted us to 
establish a phytopathogen-based co-culture platform for the targeted isolation of potential biocontrol agents from 
plants via specific pathogen enrichment. In this study, we investigated three different phytopathogenic systems, 
including kiwifruit, turfgrass, and rice, and their infectious bacterial and/or fungal pathogens. By using the developed 
mono- or co-enrichment platform, we efficiently isolated three antimicrobial agents, including Bacillus safensis ZK-1 
against Pseudomonas syringae pv. actinidiae that causes kiwifruit canker, Pseudomonas alcaligenes ZK-2 against Clari-
reedia paspali that causes dollar spot disease in turfgrass, and Bacillus velezensis ZK-3 against rice bacterial blight path-
ogen Xanthomonas oryzae pv. oryzae and rice blast fungus Magnaporthe oryzae. We believe that the phytopathogenic 
co-culture and pathogen enrichment platform developed here is versatile and effective for the isolation of potential 
biocontrol agents with specific or broad-spectrum antimicrobial activities from plants of interest in a targeted and 
large-scale manner.
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Background
Of the five major crops (rice, wheat, maize, potato and 
soybean) that feed more than 7 billion people each year, 
about 17–30% of yield losses are due to various diseases 
or pests (Godfray et al. 2010). The scale of this crop loss 
greatly undermines global food security and under-
scores the needs to develop more effective methods to 

increase the efficiency of plant disease control (Fisher 
et  al. 2018; Avery et  al. 2019). The utilization of dis-
ease-resistant plant cultivars and crop rotation are the 
main non-chemical and preventive methods for plant 
disease management to date (Barzman et  al. 2015; 
Collinge et  al. 2019). Indeed, chemical pesticides with 
preventive and therapeutic effects have long been used 
as the primary tool against crop-destroying pathogens 
(Collinge et al. 2019; Cullen et al. 2019). However, their 
costs, residual toxicity to humans and animals, and 
pathogen resistance make them unsatisfactory (Cham-
bers et  al. 2014; Fisher et  al. 2018; Wang et  al. 2021). 
Biological control involving natural biocontrol agents 
(BCA) as well as their antimicrobial metabolites has 
received increasing attention and is emerging as an 
important tool for integrated pest management (IPM). 
This is because BCA-based pesticides are inexpensive 
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to produce and have low toxicity compared to those 
chemically produced agents (Ortiz and Sansinenea, 
2021). However, one of the primary factors hindering 
large-scale implementation of biocontrol agents is the 
lack of efficient and commercialized BCA (Raymaekers 
et al. 2020). Therefore, identification of new BCAs is a 
key step in the development of commercial biocontrol 
products that requires efficient and robust screening 
methods (Raymaekers et al. 2020).

Over the past three decades, many BCAs have been 
screened and/or identified by various means. In the early 
stage, environmental samples from agricultural or non-
agricultural soil and water, diseased or heathy plant tis-
sues, plant rhizosphere and endophytes were selected 
for cultivation on liquid or agar media (Foldes et  al. 
2000; Berget al. 2005; Huang et  al. 2013; Raymaekers 
et al. 2020). The isolated and purified BCAs were further 
selected for in vitro antagonistic assays, in which a well-
known method called dual-culture assay was devised to 
co-culture BCA candidates of interest with target patho-
gens on agar plates (Pliego et al. 2011; Sales et al. 2016). 
The inhibition of growth zones of pathogens were then 
calculated to assess the respective antagonistic capac-
ity of BCA candidates against pathogens (Ramesh and 
Phadke 2012). Using this approach, a large number of live 
BCAs have been identified, including BCAs from non-
pathogenic viruses, bacteria and fungi, represented by 
the biocontrol Bacillus, Pseudomonas and Trichoderma 
species (Kamilova 2009; Lugtenberg and Kamilova 2009; 
Fira et  al. 2018). These live BCAs can secrete abundant 
diffusible antimicrobial factors to the surrounding envi-
ronment to inhibit the growth of pathogens, includ-
ing lyases and various volatile or non-volatile antibiotic 
metabolites (Cao et  al. 2018; Schulz et  al. 2002; Stinson 
et al. 2003; Tokpah et al. 2016).

BCAs identified by typical co-culture assays can be fur-
ther screened and applied to plants in the field or green-
house to evaluate their efficacy in protecting plant from 
target pathogen infection under more natural conditions 
(Comby et al. 2017). For instance, Abraham et al. (2010) 
tested 60 yeast and 92 Bacillus isolates against the post-
harvest pathogen Penicillium digitatum on oranges for 
their biocontrol potential, and found that 10 yeasts and 
10 bacterial isolates can reduce infection surface area 
by more than 50%. This plant-based in vivo assay is also 
suitable for successful screening BCAs against pathogens 
that are difficult to grow in vitro, such as biographs that 
requires live host cells for proliferation (Zhang et al. 2017; 
Raymaekers et al. 2020). The authors screened 239 bacte-
rial grapevine endophytes using grape leaf discs to deter-
mine their antagonism against the biotrophic pathogen 
Plasmopara viticola that causes downy mildew, and suc-
cessful selected two isolates that further demonstrated 

their utility in protecting grapevines from infection with 
this disease.

Moreover, an effective “marker-based” screening strat-
egy for BCA was designed recently (Tokpah et al. 2016; 
Raymaekers et al. 2020). In terms of pathogens, the ini-
tial goal of screening was to use bacterial virulence fac-
tors (i.e. lyases) that can interfere with or be blocked by 
BCAs as probes (Kapat et al. 1998). For example, Schoon-
beek et  al. (2007) screened and identified four BCA 
bacteria that can use calcium oxalate (the calcium oxa-
late salt) as the sole carbon source on the plate. Oxalic 
acid is a key factor required for full pathogenicity of two 
fungal pathogens (Sclerotinia sclerotiorum and Botrytis 
cinerea). Further plant-based bioassays confirmed that 
these four isolates indeed exhibited remarkable biocon-
trol capacity in protecting Arabidopsis thaliana, cucum-
ber, tomato and grapevine from S. sclerotiorum and B. 
cinerea (Schoonbeek et al. 2007). In another earlier study, 
Hoster et  al. (2005) reported that after enriching soil 
samples in the medium with chitin (the major compo-
nent of fungal cell walls) as the sole carbon, the authors 
isolated a new Streptomyces strain with antifungal activ-
ity. In addition to screening potential BCAs with the 
ability to directly target pathogenicity factors, “marker-
based” method is also useful for screening BCAs that 
are highly competitive with pathogens. One such repre-
sentative was documented in an earlier study (Kamilova 
et  al. 2005), in which the authors used plant root colo-
nization as a marker. In this case, the authors inoculated 
a crude mixture of rhizosphere bacteria from two dif-
ferent rhizosphere samples onto sterile seedlings of two 
plants (cucumber and tomato) to enrich for bacteria with 
enhanced competitive root tip colonization. Using this 
method, the authors finally identified four such isolates 
that protect tomato from fungal infections that cause 
crown and root rot. In plants, the “marker-based” strat-
egy is also suitable for screening BCAs that can induce 
plant immune responses to prevent pathogen infection. 
For example, by using reactive oxygen species (ROS) as 
probes to mimic plant’s innate immune response to path-
ogen infection, Zahid et al. (2017) successfully identified 
16 ROS-inducing compounds that elicited induced sys-
temic resistance (ISR) in the model plant (A. thaliana) 
against bacterial infection (Pseudomonas syringae pv. 
tomato DC3000).

However, as far as we know, almost all previously-
characterized BCA screening methods do not involve 
the enrichment of live pathogens. The long history of 
host–pathogen symbiosis prompted us to hypothesize 
that a particular plant host may have some or specific 
BCA potential to protect itself from one or more patho-
gens. This idea is supported by a recent report showing 
that Sphingomonas melonis, a bacterial member of the 
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rice seed endophyte, accumulates in disease-resistant 
rice seeds and spreads across generations to confer 
resistance to disease-susceptible phenotypes by produc-
ing anthranilic acid (Matsumoto et al. 2021). To test the 
hypothesis proposed by Matsumoto et  al. (2021), we 
selected three different phypopathogen co-culture sys-
tems and developed their respective pathogen mono- and 
co-enrichment platforms. Using the developed tech-
niques, we can effectively isolate potential BCAs from 
respective host plants. These isolated BCAs are either 
against the same pathogen used in enrichment assays or 
have broad-spectrum antimicrobial activity. The platform 
developed in this study for targeted isolation of BCA is 
easy to operate, cost-effective, and appears to be widely 
applicable to multiple host–pathogen phytosystems.

Results
Isolation of antibacterial Bacillus safensis ZK‑1 
from kiwifruit by mono‑enrichment of Pseudomonas 
syringae pv. actinidiae
To test the hypothesis that plants harboring endophytic 
BCAs resist pathogen infection during symbiotic rela-
tionship with pathogens, we first developed a bacterial 
pathogen mono-enrichment (BPME) approach using 
Pseudomonas syringae pv. actinidiae (Psa) strain C48, 
which causes kiwifruit bacterial canker, to isolate nat-
urally-occurring Psa-inhibiting bacteria from kiwifruit. 
As shown in Fig.  1, after finishing the surface sterili-
zation, the mature kiwifruits were fully digested by a 
high-speed blender, and then the supernatant (juice) 
was collected. To promote the enrichment of kiwifruit-
derived bacteria that inhibit Psa growth, we added a 
cell suspension of Psa strain C48  (OD600, 1.0) to the 
prepared kiwifruit supernatant and cultured for 2 days 
(Fig. 1 left panel, step “a” in S3#). The resultant mixture 
was spread on LB plates, and bacterial colonies grown 
under the test conditions were selected for plate-based 
antibacterial testing against C48. Screening among 20 
randomly selected colonies allowed us to identify ZK-1 
as an antagonist of C48, as evidenced by the observa-
tion of strong growth inhibition zones around the 
original inoculation site of ZK-1 on C48-imbedded LB 
plates (Fig.  2a). None of the other 19 isolates showed 
any antibacterial activity under similar test conditions 
(Additional file  1: Figure S1). Similar growth inhibi-
tory effect was observed when P. syringae pv. tomato 
DC3000, a Psa phylogenetically-related species, was 
applied (Fig.  2a). Under similar test conditions, strain 
ZK-1 also inhibited the growth of non-pathogenic E. 
coli Top10, although the zone of inhibition appeared 
to be smaller than that of C48 or DC3000 (Fig.  2a). 
These results indicate that the antibacterial factor(s) 

produced by isolated ZK-1 can diffuse into the media 
under the testing conditions. Thus, addition of cell-
free supernatant of ZK-1 inhibited the growth of C48 
or LacZ-labelled E. coli Top10 in LB liquid broth com-
pared to the control (fresh LB broth) (Fig. 2a). Interest-
ingly, on PDA plates, strain ZK-1 failed to inhibit the 
growth of five selected filamentous fungal pathogens, 
while known antifungal controls (Lysobacter enzymo-
genes OH11 and B. subtilis NCD-2) could accomplish 
this task (Fig. 2b). These results indicate that the bacte-
rial Psa-dependent BPME approach is effective in facili-
tating the targeted isolation of the antibacterial agent 
ZK-1 from kiwifruit, providing experimental evidence 
that the developed BPME can be used for the targeted 
isolation of host-derived biocontrol agents. Meanwhile, 
as a control method, the traditional BCA isolation 
method without pathogen enrichment was also carried 
out accordingly. We isolated a total of 55 BCA strains 
based on traditional approach including 22, 13 and 
20 strains from kiwifruit, forage seeds and rice seeds, 
respectively (Additional file 1: Figure S2). We randomly 
selected 32 isolates from the three aforementioned fruit 
or seed materials and performed a plate-based antifun-
gal/antibacterial assay. Unfortunately, we failed to find 
any effective biocontrol isolates (Additional file 1: Fig-
ure S2).

A BlastN search using the 16S rDNA gene of ZK-1 
as the query sequence revealed that ZK-1 is a mem-
ber of genus Bacillus. Further phylogenetic tree analy-
sis based on a commonly-applied taxonomical marker 
gene, termed the housekeeping gryB of ZK-1 and other 
reported Bacillus species, led to the identification 
of ZK-1 as Bacillus safensis (Additional file  1: Figure 
S3). For a comprehensive phylogenetic comparison, 
the genome sequence of strain ZK-1 was uploaded to 
TYGS (Type Strain Genome Server, https:// tygs. dsmz. 
de). Cut-off thresholds for dDDH (Digital DNA–DNA 
Hybridization) and ANI (Average Nucleotide Identity) 
were higher than 70% and 95%, respectively, for prokar-
yotic species delineation (Meier-Kolthoff et  al. 2019) 
(Additional file  1: Figure S4). Therefore, the results of 
genome derivation based on the dDDH and ANI values 
of strain ZK-1 and closely related strains confirmed that 
strain ZK-1 was close to B. safensis FO-36b. In addi-
tion, the phylogenomic tree reconstructed on TYGS 
provided further evidence for the taxonomic position 
of this strain within B. safensis species (Fig. 2c). Nota-
bly, there are few studies on this antibacterial agent 
ZK-1, and most of the available strains of this species 
show antifungal activity (Singh et al. 2013; Prakash and 
Arora 2021). Thus, strain ZK-1 represents an uniden-
tified antibacterial agent of B. safensis, supporting the 

https://tygs.dsmz.de
https://tygs.dsmz.de
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Fig. 1 Schematic diagram illustrating the targeted isolation of potential biocontrol agents from a plant-pathogen co-culture system by enriching 
for specific pathogens. The plant samples of interest were selected for surface sterilization with 75% ethanol, and then a high-speed blender 
(S1#) was used to crush the sample with sterilized water to produce a sample liquid mixture called plant juice (S2#). Left panel: Targeted isolation 
based on pathogen-enrichment approach. The corresponding pathogen for kiwifruit (a), turfgrass (b) or rice (c) in the following steps was added 
into the corresponding plant juice prior to co-inoculation (S3#). In this process, potential host-derived biocontrol agents (BCAs) were expected to 
be enriched by “eating” fed bacterial pathogens or by attaching and preying on fungal mycelia (S4#). This pathogen enrichment process can be 
directed to isolate a range of host-derived bacteria (S5#). These bacteria were randomly selected and tested for their antibacterial and/or antifungal 
activity by a typical method called the dual-culture method (S6#), resulting in the isolation of 3 potential bacterial biocontrol agents, named 
antibacterial ZK-1 derived from kiwifruit, antifungal ZK-2 derived from turfgrass seeds, and antibacterial and antifungal ZK-3 derived from rice seeds 
(S7#). Right panel: Direct isolation based on traditional approach. The plant juice of  kiwifruit (d), turfgrass (e) or rice (f) without any pathogens 
(S3#). The following steps (S4#–S7#) were similar to the left panel
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effectiveness of the developed BPME method in isolat-
ing pathogen-enriched and host-derived BCAs.

An antifungal Pseudomonas alcaligenes ZK‑2 
as a fungal pathogen isolated from turfgrass seeds 
by a mono‑enrichment approach
Next, we aimed to develop a fungal pathogen mono-
enrichment (FPME) method for the targeted isolation 
of antifungal agents from plants. For this purpose, we 
selected a phytosystem comprising turfgrass and its fun-
gal pathogen Clarireedia paspali lt486, which causes 
epidemics in turfgrass plants (Hu et  al. 2018). In this 
experiment (Fig.  1), turfgrass seeds were surface steri-
lized and completely crushed with a high-speed mixer, 
and the supernatant was collected by centrifugation after 
adding sterilized water. Three washed fungal mycelial 
pellets of strain lt486 were added to the prepared seed-
derived supernatant and incubated for 4 days (Fig. 1 left 
panel, step “b” in S3#). This step aimed to enrich seed-
derived bacteria that can colonize fungal hyphae. After-
wards, the fungal pellets were picked and rinsed 3 times 
with sterilized water to remove those bacteria that failed 
to colonize the fungal mycelium tightly. After this step, 
the obtained fungal pellets were directly inoculated on 
PDA plates without antibiotics, enabling the growth of 
fungal colonizing bacteria. Next, these colonizing bac-
teria were further isolated, and each purified colony was 
used for antifungal testing against C. paspali lt486. After 
screening ten bacterial strains, we found that ZK-2 is an 
antifungal agent. On PDA plates, it inhibited the growth 
of fungus lt486 by secreting a diffusible antifungal fac-
tor, such as the positive controls of L. enzymogenes OH11 
and B. subtilis NCD-2 (Fig. 3a). Interestingly, strain ZK-2 
seems to exhibit a narrower antifungal spectrum. Among 
the three selected fungal pathogens, only the growth of 
M. oryzae that causes rice blast was inhibited by ZK-2 
(Fig. 3a). The narrow-spectrum antifungal ability of ZK-2 
indicated that it may produce unique and unkown anti-
fungal toxins. When testing the potential antibacterial 
ability of ZK-2 against three phytopathogens available in 

the laboratory—P. syringae pv. tomato DC3000, Acidovo-
rax citrulli xjl12 and Xanthomonas campestris pv. camp-
estris 8004, we found that ZK-2 failed to inhibit their 
growth and no visible antibacterial zone was observed on 
LB plates (Fig.  3b). These results revealed that FPME, a 
method based on plant-pathogen co-culture and fungal 
enrichment, is also practical for the targeted isolation 
of unique antifungal agents from host plants. Finally, a 
BlastN search using the 16S rDNA sequence of ZK-2 as a 
query revealed that ZK-2 is a member of the genus Pseu-
domonas. A gryB-based phylogenetic tree confirmed this 
finding and identified ZK-2 as Pseudomonas alcaligenes 
(Additional file  1: Figure S5). To more accurately deter-
mine the phylogenetic position of strain ZK-2, multilocus 
sequence analysis (MLSA) based on the sequences of the 
16S rDNA, gyrB, rpoB and rpoD was performed as pre-
viously described (Lalucat et  al. 2020). The sequences 
of the 16S rDNA (1406 bp), gyrB (1040 bp), rpoB (1140) 
and rpoD (582  bp) genes were retrieved from GenBank 
deposits or whole genome sequences. Species closely 
related to ZK-2 based on 16S rDNA similarity were 
aligned with ZK-2. Cellvibrio japonicas DSM  16015  T 
was selected as the outgroup. The sequence data of the 
four indicated genes were concatenated and subjected to 
phylogenetic analysis using MEGA 6.0, and the resulting 
4170  bp were used to reconstruct a phylogenetic trees 
based on neighbor-joining and maximum-likelihood 
methods. Bootstrap analysis was then performed using 
1000 replications. Strain ZK-2 was found to locate within 
the monophyletic cluster of P. sagittaria JCM  18195  T 
and is closely related to P. alcaligenes NBRC  14159 T. The 
bootstrap value was higher than 80% (Fig. 3c), indicating 
that ZK-2 belongs to P. alcaligenes.

A broad‑spectrum antimicrobial Bacillus velezensis ZK‑3 
was isolated from rice seeds via co‑enrichment of bacterial 
and fungal pathogens
The above results demonstrated that the developed 
BPME or FPME method can effectively use the host–
pathogen interaction system for the targeted isolation of 

(See figure on next page.)
Fig. 2 Targeted isolation of antibacterial Bacillus safensis ZK-1 from kiwifruit by mono-enrichment of the pathogen Pseudomonas syringae pv. 
actinidiae (Psa). a Antibacterial activity of live cells (A–C) or cell-free supernatant (D, E) of ZK-1 against three selected pathogenic or non-pathogenic 
bacteria. A, B and C, LB plates pre-inoculated with Psa C48, P. syringae pv. tomato DC3000 and E. coli Top10, respectively; D, LB liquid culture of Psa 
C48 treated with ZK1 supernatant; E, LB liquid culture of the LacZ-labelled E. coli Top10 treated with ZK1 supernatant. “-”, without supernatant, 
“ + ”, with supernatant and X-gal. b Antifungal test of ZK-1 against five selected fungal pathogens. 1# and 2#, positive controls with known 
antifungal activity (1#, Lysobacter enzymogenes OH11; 2#, Bacillus subtilis NCD-2); 3#, ZK-1; 4#, E. coli Top10 (negative control); F, G, H, I and J, PDA 
plates pre-inoculated with Diaporthe actinidiae, Botrytis cinerea, Corynespora cassiicola, Alternaria alternata and Neofusicoccum parvum, respectively. c 
Phylogenetic tree constructed based on the genome sequences of strain ZK-1 in TYGS (https:// tygs. dsmz. de/). Trees were inferred from GBDP 
distances computed from genome sequences using FastME 2.1.6.1 (Lefort et al. 2015). Branch lengths were scaled according to the GBDP distance 
formula d5. The numbers above branches are GBDP pseudo-bootstrap support values > 60% from 100 replicates, with an average branch support of 
98.5%. The tree was rooted in the middle (Farris et al. 1972)

https://tygs.dsmz.de/
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antibacterial or antifungal agents of interest. In the next 
studies, we aimed to combine BPME and FPME to create 
a bacterial and fungal pathogen co-enrichment (BFPCE) 
method with the goal of targeted isolation of bacterial 

agents that can express both antibacterial and antifungal 
activities. To achieve this, we selected a rice-pathogen 
phytosystem comprising the rice blast fungal pathogen 
M. oryzae Guy11 and the rice bacterial blight pathogen 

Fig. 2 (See legend on previous page.)
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X. oryzae pv. oryzae PXO99A. In this assay (Fig. 1), as in 
the case of turfgrass seeds described above, a superna-
tant derived from rice seeds (RS) was obtained. We first 

added the cell suspension of PXO99A to the RS-derived 
supernatant for 2 days, and then added 10 fungal myce-
lial pellets of Guy11 for co-incubation for an additional 

Fig. 3 Isolation of antifungal Pseudomonas alcaligenes ZK-2 from turfgrass seeds by mono-enrichment of the pathogenic fungus Clarireedia 
paspali. a Antifungal test of ZK-2 against four selected fungal pathogens. 1#, ZK-2; 2#, E. coli Top10; 3# and 4#, positive controls (3#, Bacillus subtilis 
NCD-2; 4#, Lysobacter enzymogenes OH11) exhibit known antifungal activity but no antibacterial activity. A, B, C and D, PDA plates pre-inoculated 
with Clarireedia paspali, Magnaporthe oryzae, Botrytis cinerea and Fusarium verticillioides, respectively. b Antibacterial activity of ZK-2 against 
four selected pathogenic or non-pathogenic bacteria. E, F, G and H, LB plates pre-inoculated with Psa C48, Pseudomonas syringae pv. tomato 
DC3000, Acidovorax citrulli xjl12 and Xanthomonas campestris 8004, respectively. c Maximum-likelihood phylogenetic tree constructed based on 
housekeeping genes 16S rDNA, gyrB, rpoD and rpoB, showing the relationship between strain ZK-2 and closely related strains. Cellvibrio japonicas 
DSM 16015 T was used as the outgroup. The sequences of 16S rDNA (1406 bp), gyrB (1040 bp), rpoB (1142 bp) and rpoD (585 bp) genes were 
retrieved from GenBank deposits or whole genome sequences. GenBank accession numbers are given in parentheses in the following order: 16S 
rDNA, gyrB, rpoB and rpoD genes). Numbers at nodes are bootstrap values from 1000 repetitions (≥ 50%). Strain ZK-2 is highlighted in bold. Bar, 0.01 
substitutions per nucleotide position
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4 days (Fig. 1 left panel, step “c” in S3#). These two steps 
are designed to enrich RS-derived beneficial bacteria that 
can use both PXO99A and Guy11 as survival nutrients in 
aqueous solution. After that, we picked out Guy11 pel-
lets, washed 3 times with sterile water, and inoculated on 
PDA plates without antibiotics for 3 days. Similarly, the 
purified bacterial colonies were isolated from RS-derived 
bacteria attached to the Guy11 fungal mycelium. These 
purified bacteria were individually selected for antibacte-
rial and antifungal testing. After screening 12 randomly 
selected isolates, we observed that strain ZK-3 is an ideal 
antibacterial and antifungal agent. When we inoculated 
ZK-3 cells onto the surface of LB plates embedded with 
X. oryzae pv. oryzae PXO99A, X. campestris pv. campes-
tris 8004 or A. citrulli xjl12, we found that they all pro-
duced clear growth inhibition zones, suggesting that 
ZK-3 may exhibit a broad antibacterial spectrum by 
secreting multiple antibacterial factors into the medium 
(Fig. 4a). Further, when inoculating ZK-3 cell-free super-
natant onto LB plates carrying PXO99A, 8004 or xjl12, 
we also observed growth-inhibition zones (Fig. 4b). In a 
plate-based challenge assays of ZK-3 with fungal patho-
gens, we observed that ZK-3 can also produce diffusible 
antifungal toxins into culture media to inhibit the growth 
of four selected filamentous fungal pathogens—M. ory-
zae, C. paspali, Botrytis cinerea and Valsa pyri (Fig. 4b). 
These fungal-growth inhibitions were further confirmed 
by applying cell-free supernatant of ZK-3 (Fig.  4c). 
Finally, based on sequence analysis of its 16S rDNA and 
gyrB-based phylogenetic tree, we identified strain ZK-3 
as Bacillus velezensis (Additional file  1: Figure S6). Fur-
ther genome-derived result based on dDDH and ANI 
values of strain ZK-3 and closely related strains validated 
that strain ZK-3 is close to B. velezensis FZB42. Moreo-
ver, the phylogenomic tree reconstructed on TYGS fur-
ther confirmed the taxonomic position of the strain ZK-3 
within the B. velezensis species (Additional file 1: Figure 
S4 and Fig. 4d). Together, these findings revealed that the 
developed BFPCE method, involving co-enrichment of 
bacteria and fungi, is suitable and effective for the isola-
tion of broad-spectrum antimicrobial agents from target 
host.

Discussion
Although BCAs have been widely recognized as an 
important tool for more sustainable disease management 
and as a valuable alternative/complement to classical pes-
ticides, they still represent only a small fraction (less than 
10%) of the global crop protection market (Raymaekers 
et al. 2020). One of the critical steps in the development 
of new BCA-based commercial products is the identifi-
cation of suitable candidates through rapid and robust 
screening methods. Previous screening systems for 
BCAs were mainly based on direct antagonism (i.e. anti-
biosis and competition) of BCAs with target pathogen 
or indirect effects of BCAs on plants by triggering plant 
immune responses (Köhl et  al. 2019). In this study, we 
have established a new platform to isolate BCAs directly 
from plants via phytopathogen co-culture and pathogen 
enrichment. The development of this platform is pri-
marily based on the symbiotic relationship between host 
plants and pathogens, where a particular host plant is 
expected to harbor one or more BCAs that are antago-
nistic to pathogens that can infect the host. Using these 
developed techniques, we effectively discovered three 
BCAs (ZK-1, ZK-2 and ZK-3) that exhibited either a nar-
row antibacterial/antifungal spectrum or a broad anti-
bacterial spectrum against the pathogen originally used 
for enrichment assays.

Besides serving as a new, stand-alone BCA screening 
strategy, the developed pathogen enrichment method can 
also be combined with other classical screening systems 
to increase the screening efficacy of BCA while saving 
cost and time. For example, any pathogen of interest can 
be co-cultured with any plant or environmental sample in 
sterile water to enrich those microbes that can digest the 
tested pathogen as a source of nutrients for their survival. 
This step not only eliminates non-enriched microbes in 
the sample of interest through nutritional competition, 
but also allows pathogen-enriched microbes to dominate 
the population, facilitating their further selection. Path-
ogen-enriched and host-derived microbes can be used 
directly for subsequent BCA screening, using traditional 
co-culture tool to enhance their efficacy. Notably, the 
original “pathogen” can be changed to “Secreted Patho-
genicity Factor, SPF” to enrich the desired SPF-targeted 

(See figure on next page.)
Fig. 4 Targeted isolation of antibacterial and antifungal Bacillus velezensis ZK-3 from rice seeds by co-enrichment of the pathogen Xanthomonas 
oryzae and the fungal pathogen Magnaporthe oryzae. a Antibacterial activity of live cells (A–C) or cell-free supernatant (D–F) of ZK-3 against 
three selected pathogens. A and D, LB plate pre-inoculated with Xanthomonas oryzae PXO99; B and E, LB plate pre-inoculated with Xanthomonas 
campestris 8004; C and F, LB plate pre-inoculated with Acidovorax citrulli xjl12. b, c Antifungal test of the live cells (b) or cell-free supernatant (c) 
of ZK-3 against four selected fungal pathogens. G, H, I and J, PDA plates pre-inoculated with Magnaporthe oryzae, Clarireedia paspali, Botrytis 
cinerea and Valsa pyri, respectively. 1#, ZK-3; 2# and 3#, positive controls (2#, Lysobacter enzymogenes OH11; 3#, Bacillus subtilis NCD-2) with known 
antifungal activity; 4#, negative control, E. coli Top10. d Phylogenomic tree based on the genome sequences of strain ZK-1 in TYGS (https:// tygs. 
dsmz. de/). Trees were inferred from GBDP distances computed from genome sequences with FastME 2.1.6.1 (Lefort et al. 2015). Branch lengths 
are scaled according to the GBDP distance formula d5. The numbers above branches are GBDP pseudo-bootstrap support values > 60% from 100 
replicates, with an average branch support of 98.5%. The tree was rooted at the midpoint (Farris et al. 1972)

https://tygs.dsmz.de/
https://tygs.dsmz.de/
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Fig. 4 (See legend on previous page.)
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microbes from the sample of interest. These SPF-
enriched microbes could expand the screening efficacy 
of BCA to reduce pathogenic infection of host plants by 
targeting pathogenic SPF production.

In principle, pathogen-enriched and host-derived 
BCAs have a similar ecological niche to pathogens, favor-
ing their natural colonization on hosts. Compared with 
foreign BCAs, this ability is believed to enhance its bio-
control efficacy against ecologically relevant pathogens. 
Moreover, the discovery of host-derived BCA also pro-
vides an alternative route to identify new antimicrobial 
compounds produced by BCA. For example, the dif-
fusible antibacterial factor produced by the B. safensis 
ZK-1 could inhibit the growth of Psa, but was ineffec-
tive against several fungal pathogens tested in this study 
(Fig.  2). To the best of our knowledge, there are few 
studies on biocontrol agent of B. safensis, a species that 
mainly produces antifungal compounds (Prakash and 
Arora 2021). Therefore, B. safensis ZK-1 is most likely 
to synthesize unique antibacterial compounds. A similar 
situation applies to P. alcaligenes ZK-2 isolated from tur-
fgrass seeds rich in the fungal pathogen C. paspali. This 
strain secretes an unknown antifungal factor to inhibit 
the growth of C. paspali and M. oryzae, but not the other 
fungal pathogens and bacteria tested in this work (Fig. 3). 
This suggests that strain ZK-2 might synthesize unique 
antifungal compounds. Unlike strains ZK-1 and ZK-2, 
isolated B. velezensis ZK-3 likely produces secondary 
metabolites with both antifungal and antibacterial activi-
ties (Fig.  4). Understanding the structural basis of the 
antimicrobial compounds produced by ZK-1, ZK-2 and 
ZK-3 will undoubtedly help answer the above questions.

Conclusions
During the long-term symbiotic events between host 
plants and pathogens, a particular host plant is expected 
to harbor one or more BCAs against the host-infecting 
pathogen. To this end, this study developed a simple and 
inexpensive technique involving mono- or co-enrich-
ment of pathogens to isolate potential BCA from their 
respective host plants in a targeted manner. Using this 
developed technology, we could effectively isolate three 
BCAs with antibacterial and/or antifungal activity from 
three different host plants. The developed technique is 
generic and, with modification by changing the host and/
or pathogens of interest, allows the targeted isolation of 
BCA from diverse host–pathogen phytosystems.

Methods
Plant material, microbial strains and growth conditions
Plant materials (kiwifruit, turfgrass and rice seeds) were 
provided by colleagues or stored in the laboratory. All 
bacterial and fungal pathogens used in this study are 

available in the laboratory with their detailed information 
described in Additional file 1: Table S1. Unless otherwise 
stated, all bacterial strains were grown in Luria–Bertani 
(LB) medium at 28 °C, and all fungal strains were grown 
in potato dextrose agar (PDA) medium at 25 °C.

Targeted isolation of antimicrobial agents based 
on co‑culture of plant and pathogen
Three plant-pathogen co-culture phytosystems were used 
for targeted isolation of antimicrobial agents from hosts 
by mono- or co-enrichment of the corresponding patho-
gens. The first selected phytosystem comprises kiwifruit 
and Psa that severely infects kiwifruit and causes global 
bacterial canker (Wang et  al. 2021). Briefly, five mature 
kiwifruits were surface-sterilized with 75% alcohol for 
2 min, then washed with sterile water. This process was 
repeated 3 times. After that, the pretreated kiwifruits 
were cut into small pieces with a sterilized scalpel, trans-
ferred to a high-speed blender and supplemented with 
50 mL sterilized water, and finally fully digested accord-
ing to the operation manual. A total of 10  mL of the 
digested mixture was then transferred to a 100 mL glass 
Erlenmeyer flask supplemented with 1 mL of cell suspen-
sion  (OD600, 1.0) of Psa strain C48. The resulting kiwi-
fruit-C48 mixture was incubated in a shaker (60 rpm) at 
28  °C for 2  days. It is believed that during this process, 
the kiwifruit-derived bacteria capable “eating” (relying 
upon) C48 for survival will be enriched. After this step, 
a mixture of 100 μL was removed and smeared on LB 
plates. After3 days of incubation, the resulting colonies 
were used for plate-based antibacterial test against C48 
on agar plates.

The second phytosystem includes host plant, turfgrass 
and the infectious fungal pathogen Clarireedia paspali 
(Hu et  al. 2018). In brief, 100 turfgrass seeds were sur-
face-sterilized with 75% alcohol for 2 min, then washed 
twice with water. After that, all surface-sterilized seeds 
were transferred to a high-speed blender supplemented 
with 100  mL of sterilized water, and then fully digested 
according to the operation manual. A total of 25  mL 
digested mixture was transferred to a 100 mL glass Erlen-
meyer flask supplemented with 10 fungal mycelial plugs 
of C. paspali strain lt486. The resulting seed-lt486 mix-
ture was then incubated in a shaker (60 rpm) at 25 °C for 
2 days. We hypothesized that during such co-incubation, 
bacteria derived from turfgrass seeds capable of “eat-
ing” (relying upon) the fungus lt486 for survival would 
accumulate around the fungal mycelial plugs. The fun-
gal mycelial plugs with seed-derived bacteria were then 
rinsed twice with sterilized water to remove those bac-
teria that could not colonize the fungal mycelium. The 
resulting plugs/bacteria were then inoculated on LB 
plates. After incubating for 3 days, the bacteria enriched 



Page 11 of 14Wang et al. Phytopathology Research            (2022) 4:19  

around the fungal plugs were individually transferred to 
fresh LB plates by using a transfer loop, and then incu-
bated at 28 °C for another 3 days to obtain purified bacte-
rial colonies. Finally, the purified colonies were randomly 
selected and tested on agar plates for their antifungal 
activity against lt486.

The third selected phytosystem consists of the host 
plant rice and two infectious pathogens, the rice blast 
fungus M. oryzae and the bacterial rice blight patho-
gen Xoo (Wang et al. 2018; Li et al. 2020). In short, 100 
rice seeds were surface sterilized with 75% alcohol for 
2  min, then washed twice with sterilized water. After 
that, all seeds were transferred to a high-speed blender 
supplemented with 100 mL of sterilized water, and then 
fully digested according to the operation manual. A total 
of 25  mL of digested mixture was then transferred to a 
100 mL glass Erlenmeyer flask supplemented with 1 mL 
cell suspension  (OD600, 1.0) of Xoo strain PXO99A. This 
mixture was then incubated in a shaker (60  rpm) at 
28  °C for 2  days to enrich those rice seed-derived bac-
teria that could “eat” PXO99A, followed by the addition 
of 10 mycelial plugs of M. oryzae strain Guy11 for addi-
tional incubation for 3 days at 25 °C in a shaker (60 rpm). 
This step aimed to further enrich the rice seed-derived 
bacteria that can use the fungal mycelium as a source of 
nutrient for growth. Afterwards, the obtained mycelial 
plugs were rinsed twice with sterilized water, and then 
inoculated on LB plates for 3 days to enrich the growth 
of bacteria around the fungal plugs. These bacteria were 
individually transferred to fresh LB plates using a transfer 
loop, and incubated at 28 °C for 3 days to obtain purified 
bacterial colonies, which were then tested on agar plates 
for their antimicrobial activities against PXO99A and/or 
Guy11.

Antifungal and antibacterial assays based on live BCA cells
In the fungal inhibition assay, plugs (2 mm in diameter) 
cut from the edges of a 5-day-old colonies of selected 
fungal pathogen were transferred from PDA to the centre 
of a fresh PDA petri dish. Subsequently, 2 μL of bacte-
rial cell suspension  (OD600, 1.0) of interest was inoculated 
on the edge of petri dishes previously inoculated with the 
fungal pathogen. After 3 days of incubation at 25 °C, the 
antagonistic activity was revealed by the inhibition zone 
around the colonies. In the bacterial inhibition assay, 
1 mL overnight culture of selected phytopathogenic bac-
terium was mixed with 25  mL of molten LB agar (LA) 
medium and poured into a petri dish. Once solidification, 
2 μL of cell suspensions  (OD600, 1.0) of various plant-
derived bacteria isolated in this study were spot-inocu-
lated on the surface of LA culture dishes, each containing 

the indicator phytopathogen. After 3 days of incubation 
at 28  °C as previously described (Yang et al. 2020; Shen 
et al. 2021), zones of inhibition in antifungal and antibac-
terial assays were recorded using a Nikon camera (D7100, 
Japan). All experiments were carried out 3 times with 3 
replicates for each treatment.

Antifungal and/or antibacterial assay based on cell‑free 
supernatant
The bacterial strains tested in this study were individually 
cultured in fresh LB broth (25  mL) at 28  °C for 2  days. 
After centrifugation (6000  rpm) at room temperature, 
cells were removed and the corresponding supernatant 
from each strain was collected. These supernatants were 
further filtered by using 0.22  μM filter to produce cell-
free supernatants (10 mL). In the following assays, 1 mL 
of the cell-free supernatant of the ZK-1 strain was mixed 
with an equal volume of fresh LB broth with or without 
the addition of 100  μg/mL X-gal (5-Bromo-4-chloro-
3-indolyl β-D-galactopyranoside), followed by inocula-
tion of 100 μL overnight culture of Psa strain C48 or 
the LacZ-labeled E. coli strain Top10 (Shen et  al. 2021) 
for antibacterial assay. For supernatant- based antifungal 
assay, cell-free supernatants of ZK-3 were collected as 
described above. Different volumes of the resulting ZK-3 
supernatant were added to the PDA agar plates. Various 
filamentous fungal plugs excised from 3-day-old colo-
nies on PDA plates were inoculated in the center of fresh 
PDA plates containing 5, 10 or 20% (volume/volume) of 
ZK-3 cell-free supernatant. Growth of fungal mycelia was 
detected after 5 days of culturing at 25 °C without shak-
ing. All experiments were carried out 3 times, with 3 rep-
licates for each treatment.

Molecular identification and phylogenetic analysis
Three purified single colonies with bacterial biocontrol 
potential (named as ZK-1, ZK-2 and ZK-3, respectively) 
were picked and inoculated individually onto fresh LB 
liquid broth at 28 °C for 2 days. Cells of each strain were 
collected by centrifugation (12,000  rpm) at room tem-
perature. Genomic DNA of each strain was extracted 
by using a commercial kit (DP302, Tiangen, China). For 
molecular identification, the 16S rDNA gene and the 
house-keeping gene gyrB encoding the DNA gyrase sub-
unit B of each strain were PCR-amplified using the corre-
sponding universal primers (Additional file 1: Table S2). 
Each PCR product was then purified using Takara Min-
iBEST DNA fragment purification kit (No. 9761, Shang-
hai, China). Each purified DNA fragment obtained was 
sequenced by GENEWIZ Company (Suzhou, China) and 
compared with the DNA sequences available in the NCBI 
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database using the BLASTN program. In this study, the 
16S rDNA gene was used to classify the strains at the 
genus level, and the house-keeping gene gyrB was used to 
confirm and generate a phylogenetic tree. In short, gyrB 
DNA sequences from the NCBI database were compared 
with the ClustalW program in MEGA 7.0 (Kumar et  al. 
2016). As previously described, the gyrB-based phyloge-
netic tree was generated by using the nearest neighbour 
data analysis method with 1000 bootstrap replicates,

MLSA analysis
Genome sequence data for strains ZK-1 and ZK-3 was 
uploaded to the Type Strain Genome Server (TYGS) 
available at https:// tygs. dsmz. de (Meier-Kolthoff et al. 
2019) for genome-wide based taxonomic analysis. DNA-
DNA relatedness values were estimated from genome 
sequences by digital DNA–DNA hybridization (dDDH) 
using Formula 2 of the Genome-to-Genome Distance 
Calculator 2.1 (Meier-Kolthoff et  al. 2013). Average 
Nucleotide Identity (ANI) values were calculated using 
the ANI Calculator (www. ezbio cloud. net/ tools/ ani) 
(Yoon et  al. 2017a, b). Genome-based phylogeny was 
inferred from available type strains of Bacillus species 
with full genome sequences using TYGS (Meier-Kolthoff 
et al. 2019

The 16S rDNA sequence of strain ZK-2 was PCR ampli-
fied as described by Weisburg et al. (1991). To reveal phy-
logenetic relationship, the obtained sequence (1406  bp) 
was compared with those of other type strains available 
in the EzBioCloud server (Yoon et  al. 2017a, b). Four 
house-keeping gene (16S rDNA, gyrB, rpoB and rpoD) 
sequences were directly downloaded from GenBank or 
retrieved from draft/complete genome sequences. Mul-
tiple alignments with sequences from closely related 
strains were performed using the Clustal W in MEGA 
version 6.0 software (Tamura et  al. 2013). Phylogenetic 
trees were reconstructed with maximum likelihood 
(Felsenstein. 1981) in MEGA 6.0 (Tamura et al. 2013), or 
with FastME (Lefort et al. 2015) based on genome blast 
distance phylogeny (GBDP) distances calculated from 
genome sequences. For these, all pairwise genome com-
parisons were conducted using GBDP and intergenomic 
distances inferred under algorithm ‘trimming’ and the 
distance formula d5 (Meier-Kolthoff et  al. 2013).Trees 
were rooted at the midpoint (Farris et al. 1972). Branch 
supports were inferred from 100 bootstrap replicates. All 
strains used for constructing the phylogenetic trees are 
listed in Additional file 1: Tables S3–S5.
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