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Maize catalases localized in peroxisomes
support the replication of maize chlorotic
mottle virus
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Abstract

Co-infection of maize chlorotic mottle virus (MCMV) with a virus in the Potyviridae family, such as sugarcane mosaic
virus, usually leads to maize lethal necrosis (MLN). Over the past decade, MCMV/MLN has emerged in many
countries/regions of the world and resulted in serious yield loss in maize production. Although partial functions of
some MCMV-encoded proteins have been identified, the host factors related to MCMV replication are poorly
understood. Here, we show that maize peroxisomes can form aggregated bodies in MCMV-infected leaf cells. The
dsRNA binding-dependent fluorescence complementation assay indicated that the aggregated peroxisomes in
maize served as the major replication site of MCMV. In addition, our results revealed that all the three maize
catalases were present mostly in peroxisomes in the presence or absence of MCMV. Furthermore, we determined
that inhibition of catalase activity or induction of reactive oxygen species (ROS) in maize protoplasts significantly
reduced the accumulation of MCMV RNA. In summary, this research reveals the replication site of MCMV and an
important role of maize catalases in supporting virus replication. Our results are conducive to understanding the
pathogenesis of MCMV and identifying targets for resistance breeding or gene regulation strategies.
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Background
Pathogenic infections in plants are frequently associated
with the accumulation of reactive oxygen species (ROS),
such as superoxide anion radical (.O2

−), hydroxyl radical
(.OH) and hydrogen peroxide (H2O2), which serve as sig-
nal transduction molecules to control a large array of
biological processes, including senescence, growth and
development, and biotic or abiotic stress responses
(Schippers et al. 2012; Lehmann et al. 2015; Guo et al.
2017; Zhou et al. 2018). In photosynthetic cells, chloro-
plasts, mitochondria and peroxisomes are the major sites
of intracellular ROS production (Mhamdi et al. 2010).
The generation of ROS, known as the oxidative burst, is
considered the earliest response of plant cells to biotic

stimuli (Vranova et al. 2002). In addition, as a water-
soluble, long half-life and non-radical two-electron re-
duction product of oxygen, H2O2 is generated as an im-
portant messenger to induce downstream defense
proteins. Since increased ROS production during patho-
gen attack triggers accumulation of salicylic acid, in-
duces pathogenesis-related protein genes and even cell
death, the accumulation of ROS has been accepted as a
hallmark of plant defense (Lamb and Dixon 1997;
Dempsey et al. 1999). It is assumed that the generation
of H2O2 at the correct time and location successfully
hinders the penetration of pathogens into their host
plants (Mellersh et al. 2002; Magbanua et al. 2007).
Although H2O2 is essential for signaling pathogen in-

vasion and host defense, high level of H2O2 induces oxi-
dative stress, ultimately resulting in cell and tissue death.
To protect cells from the deleterious effects of H2O2,
plants have evolved efficient enzymatic and non-
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enzymatic mechanisms to detoxify H2O2. Plants are cap-
able of producing several types of enzymatic antioxidants
(e.g. catalases and ascorbate peroxidases), peroxiredox-
ins, glutathione peroxidases and glutathione S-
transferases to metabolize H2O2 (Anjum et al. 2016).
Among the H2O2-scavenging enzymes, catalase (CAT) is
a highly conserved enzyme that catalyzes the decompos-
ition of hydrogen peroxide (H2O2) to produce water and
oxygen and thus plays a critical role in plant disease re-
sistance. CAT is a heme-containing enzyme that is
found in diverse organisms, including prokaryotes, fungi,
plants and animals (Chelikani et al. 2004). In higher
plants, catalase is a tetrameric enzyme consisting of
polypeptides of 50–70 kDa (Mhamdi et al. 2010).
In maize (Zea mays L.), the catalase gene family is

composed of three members that are encoded by three
unlinked genes (ZmCAT1, ZmCAT2 and ZmCAT3)
(Roupakias et al. 1980). As in some higher plants, three
catalases in maize share reasonably high sequence simi-
larity at the amino acid level (63–77%) (Magbanua et al.
2007). Each of the catalase genes exhibits temporal and
spatial specificity in its expression (Scandalios et al.
1984; Wadsworth and Scandalios 1989; Redinbaugh
et al. 1990). For instance, ZmCAT1 is the only catalase
isozyme expressed in milky endosperm, aleurone and
scutellum during the early stages of kernel development
(Guan and Scandalios 1993). ZmCAT2 is positively regu-
lated by light in a tissue-specific manner, and the
ZmCAT3 transcript shows a circadian rhythm, with a
peak expression at the night/day transition (Skadsen and
Scandalios 1987; Guan et al. 1996).
CAT is mainly localized in peroxisomes in higher

plants. The non-cleaved tripeptide (S/T-R-L) at the ex-
treme C-terminus of polypeptide have been identified
for determining import of catalases into peroxisomes
(Brown and Baker 2008; Mhamdi et al. 2010). ZmCAT1
and ZmCAT2 localize in the peroxisome (Abler and
Scandalios 1993). ZmCAT3 might localize in the mito-
chondria since significant catalase activity (ZmCAT3)
was detected in washed mitochondria (Scandalios et al.
1980). In addition, catalases play important roles in the
interactions of host plants with viral pathogenicity-
related proteins (Inaba et al. 2011; Mathioudakis et al.
2013; Murota et al. 2017; Roshan et al. 2018; Yang et al.
2020; Jiao et al. 2021). For instance, Arabidopsis thaliana
catalase 3 interacts with cucumber mosaic virus (CMV-
HL) 2b protein to inactivate the silencing suppressor ac-
tivity of 2b (Inaba et al. 2011). However, whether cata-
lases affect viral replication remains largely unknown.
Maize chlorotic mottle virus (MCMV) is the only

member of the genus Machlomovirus in the family Tom-
busviridae, and its host range is restricted to Poaceae
(Scheets 2016). The MCMV genome consists of a
positive-sense single-stranded RNA of 4437 nt without a

5′ cap or a poly (A) tail, and encodes seven proteins in-
cluding P32, P50, P111, P7a, P7b, P31 and coat protein
(CP) (Nutter et al. 1989; Scheets et al. 1993; Scheets
2016) (Fig. 1a). P32 locates at a region proximal to the
5′ end of the viral genome, and is unique to MCMV in
the family Tombusviridae (Nutter et al. 1989; Scheets
2016). The absence of P32 in MCMV dramatically de-
creases viral accumulation and symptoms in host plant
(Scheets 2016). P50 and its readthrough protein P111
are replication proteins, similar with those in other vi-
ruses of the family Tombusviridae. Other four proteins
(P7a, P31, P7b and CP) are expressed from subgenomic
RNA1 (sgRNA1) (Scheets 2000, 2016). Mutagenesis ana-
lyses demonstrate that P7a, P7b and CP are required for
cell-to-cell movement in maize plants (Scheets 2016).
The MCMV CP interacts with the nuclear import factor
importin-α for nuclear import, and silencing of the
importin-α gene decreases MCMV accumulation (Zhan
et al. 2016). Another unique protein P31 expressed as a
readthrough extension of P7a is required for efficient
systemic infection (Scheets 2016; Jiao et al. 2021). P31 is
the major pathogenicity determinant of MCMV, and its
expression induces necrosis in systemically infected
leaves (Jiao et al. 2021). A 337-nt noncoding sgRNA2
was detected in MCMV-infected maize protoplasts and
plants (Scheets 2000). MCMV causes chlorotic, mottle
symptoms and even necrosis in maize plants. In
addition, it is part of a synergistic disease called maize
lethal necrosis (MLN) (Goldberg and Brakke 1987;
Scheets 1998; Xia et al. 2016; Wang et al. 2017). MLN is
caused by a mixed infection of MCMV and a virus in
the Potyviridae family, such as sugarcane mosaic virus
(SCMV) (genus Potyvirus) (Scheets 1998; Xia et al. 2016;
Wang et al. 2017), maize dwarf mosaic virus (MDMV)
(genus Potyvirus) (Goldberg and Brakke 1987), Johnson-
grass mosaic virus (JGMV) (genus Potyvirus) (Stewart
et al. 2017) and wheat streak mosaic virus (WSMV)
(genus Tritimovirus) (Scheets 1998). MLN is a devastat-
ing disease which can cause up to 100% yield loss
(Redinbaugh and Stewart 2018). Over the past decade,
the emergence of MLN has resulted in significant eco-
nomic losses in many maize-growing countries/regions
of the world (Redinbaugh and Stewart 2018). Although
efforts were made to identify resistance against MCMV,
no genes conferring complete resistance have been re-
ported (Redinbaugh and Stewart 2018; Carino et al.
2020). Some mechanisms underlying MCMV pathogen-
esis have been elucidated (Inaba et al. 2011; Scheets
2016; Zhan et al. 2016; Carino et al. 2020; Jiao et al.
2021), however, little is known about its replication
mechanisms. In this research, we focused on the mo-
lecular mechanisms of MCMV replication, aiming at
providing valuable knowledge towards identifying targets
for virus resistance.
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Here, we reveal that MCMV infection can induce the
formation of aggregated bodies of peroxisomes in host
plants. Our results demonstrate that all three maize cat-
alases are localized in peroxisomes where MCMV repli-
cation occurs. In addition, inhibition of catalase activity
negatively regulates MCMV replication. This study con-
tributes to our understanding of MCMV replication and
is helpful for controlling MLN.

Results
MCMV infection induces the formation of aggregated
bodies of peroxisomes in maize leaves
Here, 8-day-old maize seedlings (B73) inoculated with
MCMV (pMCM41) showed chlorotic, mottle symptoms

and even necrosis at 10 days post-inoculation (dpi),
whereas no symptom was observed in control plants
mock-inoculated with phosphate buffer (Fig. 1b, c). Our
previous research revealed that peroxisomes were highly
aggregated in MCMV-infected maize leaves (Jiao et al.
2021). To further determine whether a similar
localization pattern of peroxisomes occurs in maize liv-
ing cells after MCMV infection, we used DsRed-SKL (a
peroxisome marker) to visualize the distribution of per-
oxisomes. Gold particles coated with pGD-DsRed or
pGD-DsRed-SKL were bombarded into mock- and
MCMV-inoculated maize (B73) leaves. Red fluorescence
was observed at 36 h post-bombardment (hpb). The
fluorescence for DsRed alone was distributed in both the

Fig. 1 Maize chlorotic mottle virus (MCMV) infection causes chlorosis and necrosis in maize leaves. a Genomic organization of MCMV. The heavy
line indicates the genomic RNA and the thinner lines represent the subgenomic RNA1/2 (sgRNA1/2). Boxes indicate the coding regions and their
open reading frames. The vertical lines (asterisks in red) indicate the leaky stop codons leading to translational readthrough. The dashed line
(P7b) represents a non-AUG start codon. CP: coat protein. b, c Phenotypes in the first systemically infected maize leaves of mock-inoculated (b) or
MCMV-inoculated (c) maize plants at 10 days post-inoculation (dpi). The red arrows indicate the necrotic regions. Bar, 10 cm

Fig. 2 Peroxisomes relocalize to form aggregated bodies in maize chlorotic mottle virus (MCMV)-infected cells. a, b Particles carrying each of the
two plasmids expressing DsRed or DsRed-SKL were bombarded into mock- (a) and MCMV-inoculated (b) maize (B73) leaves. The bombarded
leaves were visualized at 36 h post-bombardment (hpb) by confocal microscopy. Bars, 10 μm
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cytoplasm and nucleus (Fig. 2a). Punctate red fluores-
cence in the cytoplasm was observed when DsRed-SKL
was expressed in mock-inoculated maize leaves (Fig. 2a).
Intriguingly, red fluorescence from DsRed-SKL was
redistributed to aggregated bodies in MCMV-infected
maize leaves (Fig. 2b), while the fluorescence for DsRed
alone was unchanged after MCMV infection (Fig. 2b).
These results indicate that MCMV infection induces
maize peroxisomes to form aggregated bodies.

Aggregated peroxisomes serve as the replication sites of
MCMV
It was reported that the aggregated peroxisomes in
plants serve as the viral replication sites during infection
by tomato bushy stunt virus (TBSV) (McCartney et al.
2005). We presumed that MCMV infection might also
cause aggregation of peroxisomes to facilitate its replica-
tion in host cells. MCMV encodes two replication pro-
teins, P50 and P111, which are necessary for virus
replication (Scheets 2016). To validate whether MCMV
RNA synthesis takes place in the aggregated peroxi-
somes, maize protoplasts were co-transfected with the
B2-YN/VP35-YC reporter, GFP-P50 and MCMV in vitro
transcripts. Since B2-YN and VP35-YC specifically bind
to dsRNA, the reconstituted YFP fluorescence indicates
their co-binding to MCMV double-stranded replicative
intermediates (Cheng et al. 2015). Confocal results
showed that the dsRNA detected by B2-YN and VP35-
YC colocalized with the MCMV replication protein P50
(Fig. 3a). No YFP fluorescence signal was observed when
maize protoplasts were co-transfected with the B2-YN/
VP35-YC reporter and GFP-P50 in the absence of
MCMV (Fig. 3b). Thus, P50 could be used as a marker
for identifying the viral replication complex (VRC) of
MCMV. We subsequently transfected maize protoplasts
with GFP-P50, DsRed-SKL and MCMV in vitro tran-
scripts. As shown in Fig. 3c, GFP-P50 was closely associ-
ated with the aggregated peroxisomes (DsRed-SKL). In
addition, the P50 protein, expressed alone, targeted and
induced maize peroxisomes to form aggregated bodies
(Fig. 3d). These results indicate that aggregated peroxi-
somes serve as the replication sites of MCMV.

ZmCATs are localized in peroxisomes in maize cells
Although CAT is known to localize primarily in the per-
oxisomes in many plants, the localization of maize cata-
lases remains largely unknown (Abler and Scandalios
1993). To determine the subcellular localization of
ZmCATs, maize protoplasts were co-transfected with
pGD-GFP-ZmCAT1/2/3 or pGD-GFP and DsRed-SKL.
Fluorescence in maize protoplasts expressing GFP was
observed in both the cytoplasm and nucleus (Fig. 4a, line
1), whereas fluorescence from GFP-ZmCATs colocalized
with the red fluorescence produced by DsRed-SKL (Fig.

4a, lines 2–4). Similar results were observed in maize
epidermal cells (Fig. 4b). A previous study reported that
ZmCAT3 might be localized in mitochondria (Willekens
et al. 1995). Here, we examined the localization of GFP-
ZmCAT3 in maize protoplasts with mitochondria-
specific dye Mito-Tracker Red, and found that the GFP
fluorescent signal did not co-localize with Mito-Tracker
Red (Additional file 1: Figure S1). These data indicate
that all three ZmCATs are localized in the peroxisomes
in maize cells.

ZmCATs are localized in aggregated peroxisomes in the
presence of MCMV
To explore whether the subcellular localization of
ZmCATs is altered during MCMV infection, maize
protoplasts were co-transfected with pGD-GFP-
ZmCAT1/2/3 and in vitro transcripts of MCMV.
Green fluorescence was observed at 16–24 h post-
transfection (hpt). Interestingly, green fluorescence
(GFP-ZmCATs) was observed to form aggregated
bodies in the cytoplasm during MCMV infection
(Fig. 5a, lanes 2–4), whereas no such aggregated bod-
ies were detected in healthy maize cells (Fig. 5a, lane
1). In addition, similar results were obtained when
GFP-ZmCAT1/2/3 were introduced into MCMV-
inoculated leaf cells by particle bombardment (Fig.
5b). When GFP-ZmCAT1, DsRed-SKL and in vitro
transcripts of MCMV were transfected together into
maize protoplasts, GFP-ZmCAT1 colocalized with ag-
gregated DsRed-SKL (Fig. 5c). Similar to the results
obtained in maize protoplasts, the fluorescence of
GFP-ZmCAT1 remained in the aggregated bodies
formed by DsRed-SKL in maize epidermal cells (Fig.
5d). We confirmed the accumulation of MCMV in
maize tissues used for bombardment by immunoblot-
ting (Additional file 1: Figure S2). These results indi-
cate that maize catalases are localized in aggregated
peroxisomes during MCMV infection. Since MCMV
carries out its replication in aggregated peroxisomes,
we presumed that catalases play a role in viral repli-
cation. To investigate the possible role of catalase in
MCMV replication, maize protoplasts were transfected
with in vitro transcripts of MCMV and then incu-
bated with 20 mM 3-amino-1, 2, 4-triazole (3-AT, a
catalase inhibitor). Northern blot analyses were subse-
quently conducted with RNA extracts at 18 hpt to
quantify the accumulation of MCMV RNA. As shown
in Fig. 5e, treatment with 3-AT negatively regulated
MCMV RNA accumulation. Catalase can protect cells
from the deleterious effects of H2O2, and the de-
creased catalase activity may lead to increased accu-
mulation of H2O2 to produce negative effect on
MCMV replication. Importantly, high intracellular
ROS production was observed when maize protoplasts
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were treated with the ROS inducer methyl viologen
(MV) (Additional file 1: Figure S3). Thus, maize pro-
toplasts were transfected with in vitro transcripts of

MCMV and then incubated with MV for 18 h. North-
ern blot analyses indicated that treatment of maize
protoplasts with MV led to inhibition of MCMV

Fig. 3 Aggregated peroxisomes serve as the replication sites of maize chlorotic mottle virus (MCMV). a, b Co-localization of dsRNA with the
MCMV auxiliary replication protein P50 (GFP-P50) in the presence (a) or absence (b) of MCMV at 3 days post-transfection (dpt). Bars, 10 μm. c, d
Co-localization of MCMV auxiliary replication protein P50 (GFP-P50) with aggregated peroxisomes in the presence (c) or absence (d) of MCMV.
The green/red fluorescence was observed at 24 h post-transfection (hpt) (protoplasts) and 36 hpb (leaves), respectively. Bars, 10 μm
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Fig. 4 (See legend on next page.)
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replication (Fig. 5e). Together, these results suggest
that maize catalase activity plays an important role in
supporting MCMV replication.

Discussion
P50 and its readthrough protein P111 are the only
MCMV proteins required for replication (Scheets 2016),
however, the precise replication site of MCMV remains
obscure. Using the in vivo double-stranded RNA
(dsRNA) labeling system, we showed that the replication
of MCMV is associated with peroxisomes (Fig. 3).
MCMV infection caused aggregation of peroxisomes
(Figs. 2 and 3), with similar situations occurring in infec-
tions by some viruses in the family of Tombusviridae
(Cook et al. 2019). For instance, tomato bushy stunt
virus (TBSV), cucumber necrosis virus (CNV) and cym-
bidium ringspot virus (CymRSV) use peroxisomes as
scaffolds for viral replication factories (Cook et al. 2019).
Upon infection, the TBSV p33 protein targets initially

from the cytosol to peroxisomes to eventually generate
the peroxisome-derived multivesicular bodies (McCart-
ney et al. 2005). During CNV infection, the peroxisome
biogenesis is enhanced to facilitate virus replication
(Rochon et al. 2014). In addition to support the replica-
tion of plant viruses, peroxisomes have long been recog-
nized as key players in human virus infections. For
instance, human cytomegalovirus (HCMV) and herpes
simplex virus type 1 (HSV-1) change peroxisome
morphology to support their replication (Jean Beltran
et al. 2018). Additionally, some flaviviruses such as den-
gue virus (DENV) and West Nile virus (WNV) target
their capsid proteins to peroxisome membranes, result-
ing in a significant decrease in the number of peroxi-
somes and consequently inhibiting type III interferon
expression (peroxisome-mediated immune signaling)
(You et al. 2015). On the one hand, studying viral infec-
tion provides the opportunity for addressing core ques-
tions of peroxisome biology. On the other hand,

(See figure on previous page.)
Fig. 4 Subcellular localization of ZmCATs in maize cells. a Maize protoplasts were transfected with each plasmid as indicated on the left of each
column. DsRed-SKL was used as a peroxisome marker. Red fluorescence signal was captured at 24 hpt. Bars, 10 μm. b Maize leaves were co-
bombarded with GFP-ZmCAT1/2/3 and DsRed-SKL and the bombarded leaves were examined for the expression of fusion proteins at 36 hpb.
Bars, 10 μm

Fig. 5 The peroxisome localization of ZmCATs is required for viral replication of maize chlorotic mottle virus (MCMV). a, b Subcellular localization
of ZmCATs in maize protoplasts in the presence of MCMV in vitro transcripts (a) and in MCMV-infected leaves (b). The green/red fluorescence was
observed at 24 hpt (a) and 36 hpb (b), respectively. Bars, 10 μm. c, d GFP-ZmCAT1 co-expressed with DsRed-tagged peroxisome marker SKL in
MCMV-infected maize protoplasts (c) and MCMV-inoculated maize leaves (d). The green/red fluorescence was observed at 24 hpt (c) and 36 hpb
(d), respectively. Bars, 10 μm. e Protoplasts were inoculated with MCMV in vitro transcripts and incubated at 25 °C for 18 h in the presence of 20
mM 3-AT (3-amino-1, 2, 4-triazole) or 10 μM MV (methyl viologen). The accumulation levels of MCMV genomic RNA were determined by Northern
blot and visualized with the IMAGE J software. The numbers shown below the gel indicate the ratio of MCMV genomic RNA (top band)
accumulation level in 3-AT/MV-treated maize protoplasts to that in the H2O-treated control maize protoplasts (presented as 100). Relative
genomic RNA accumulation was calculated from maize protoplast Northern blot data for three separate inoculation experiments and represents
mean ± standard error

Jiao et al. Phytopathology Research            (2021) 3:17 Page 7 of 11



elucidating the processes underlying peroxisome biology
may also provide strategies to selectively inhibit
peroxisome-mediated functions required for viral
infection.
In this study, we determined that all the three maize

catalases are localized in peroxisomes (Fig. 4). Both
ZmCAT1 and ZmCAT2 contain a tripeptide SRL (while
ZmCAT3 contains a TRL) with a peroxisomal targeting
signal in the C-terminal. Previous study reported that
ZmCAT3 co-isolated with the mitochondrial fraction of
mesophyll cells (Scandalios et al. 1980). In addition,
proteomic analysis of highly purified mitochondria from
Arabidopsis cells also identified AtCAT2 and AtCAT3
(Heazlewood et al. 2004). There has been no demonstra-
tion of catalase import into angiosperm mitochondria.
These findings may indicate a progressive decline
throughout the mitochondrial purification procedure.
Thus, it is possible that contamination may account for
previous reports on catalase activity in mitochondria.
However, peroxisomal catalase can change the
localization to other organelles under some conditions.
For instance, yeast catalase was co-localized to mito-
chondria in a manner dependent on nutritional condi-
tions (Petrova et al. 2004; Mhamdi et al. 2010).
Therefore, dual peroxisomal/mitochondrial targeting of
catalases cannot be ruled out. In this study, the catalase
activity is required for MCMV replication because treat-
ment with catalase inhibitor 3-AT reduced MCMV rep-
lication (Fig. 5e). Since the accumulation of H2O2 can
impede virus replication, it is likely that catalases are
needed to maintain a specific site for assembling viral
replication complex (VRC) (Fig. 5e). This may also ex-
plain why the localization of ZmCATs to peroxisome is
not altered in the presence of MCMV.
CAT is not only a strong antioxidant enzyme in scav-

enging H2O2, but also plays critical roles in plant re-
sponses to various stresses. It is reported that a rice salt
tolerance receptor-like cytoplasmic kinase 1 (STRK1)
anchors and interacts with OsCatC at the plasma mem-
brane (Zhou et al. 2018). The OsCatC is phosphorylated
and activated by STRK1, thereby regulating H2O2

homeostasis and improving salt tolerance in rice (Zhou
et al. 2018). Recently, evidence has emerged that
AtCAT2 regulates leaf senescence in Arabidopsis (Guo
et al. 2017). The transcription factor WRKY75 as a posi-
tive regulator of leaf senescence suppresses H2O2 scav-
enging partly by repressing the transcription of AtCAT2
(Guo et al. 2017). Increasing evidences show that cata-
lase regulates plant resistance to diverse pathogens. For
instance, biotrophic-pathogen-induced salicylic acid (SA)
accumulation dampens both auxin and jasmonic acid
(JA) synthesis by inhibiting AtCAT2 activity in Arabi-
dopsis (Yuan et al. 2017). Suppression of AtCAT2 by SA
results in high levels of H2O2, leading to sulfenylation of

tryptophan synthetase b subunit 1, thus depleting the
auxin biosynthetic precursor tryptophan (Yuan et al.
2017). AtCAT2 promotes acyl-CoA oxidase 2 (ACX2)
and ACX3 activity to increase JA accumulation (Yuan
et al. 2017). In addition, the pathogenic oomycete Phy-
tophthora sojae secretes two cytoplasmic effectors,
PsCRN63 and PsCRN115, to recruit NbCAT1 into nu-
cleus (Zhang et al. 2015). Furthermore, these two effec-
tors manipulate plant programmed cell death (PCD)
through interfering with catalases and eventually per-
turbing H2O2 homeostasis (Zhang et al. 2015).
The effects of interactions between CATs and viruses

varied in different host-pathogen systems. For instance,
helper component proteinase (HC-Pro) encoded by chilli
veinal mottle virus (ChiVMV) directly interacts with
CAT1 and CAT3 of Nicotiana tabacum in the cyto-
plasm to facilitate viral infection (Yang et al. 2020). Nei-
ther CAT1 nor CAT3 affects the RNA silencing
suppression activity of HC-Pro (Yang et al. 2020). How-
ever, the interaction between CMV-HL 2b and AtCAT3
significantly inactivates the RNA silencing suppression
activity of CMV-HL 2b (Inaba et al. 2011). Intriguingly,
some virus-induced necrosis are consequences of direct
protein-protein interactions between viral pathogenicity
determinants and host catalases. In our previous study,
we reported that MCMV P31 interacts with maize cata-
lases 1/3 to inhibit their catalase activities, and subse-
quently attenuate SA-mediated defense (Jiao et al. 2021).
Thus, systemic necrosis is observed in upper non-
inoculated leaves (Jiao et al. 2021). Similarly, tomato leaf
curl Palampur virus AV2 protein promotes systemic ne-
crosis in Nicotiana benthamiana plants by interacting
with host CAT2 (Roshan et al. 2018). In this study, we
revealed that catalase activity positively regulates MCMV
replication especially under high-ROS condition (Fig.
5e). Maize catalases have been identified to regulate sev-
eral processes in MCMV infection. The regulatory
mechanisms underlying the ROS metabolism and
MCMV infection need to be further investigated.

Conclusions
MCMV is the emerging virus that drives MLN expan-
sion. Elucidating the molecular mechanisms underlying
MCMV pathogenesis will be conducive to controlling
this devastating disease. In this study, we revealed that
MCMV infection induced maize peroxisomes to form
aggregated bodies, which served as viral replication sites.
The three maize catalases were shown to localize in per-
oxisomes in the absence and presence of MCMV RNA.
In addition, inhibiting catalase activity negatively regu-
lated MCMV replication. The results are conducive to
elucidating the replication mechanisms of MCMV, and
also to understanding the molecular interaction between
MCMV and host maize.
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Methods
Plant growth conditions and virus inoculation
Maize seedlings (inbred line B73) were grown in a
growth chamber (24 °C day/22 °C night, 16 h light/8 h
dark) for virus inoculation and analyses.
MCMV was prepared from the full-length cDNA clone

(pMCM41) (Scheets et al. 1993). Crude extracts were
prepared by homogenizing the MCMV-infected maize
(B73) leaf tissues in 0.01M phosphate buffer [0.01M
KH2PO4: 0.01M Na2HPO4 = 49:51 (v/v), pH 7.0] at 1:10
(w/v) ratio.

Plasmid construction
The coding sequences of ZmCAT1 (GenBank accession
no. NM_001254879.2), ZmCAT2 (NM_001111840.2)
and ZmCAT3 (NM_001363892.1) were amplified indi-
vidually from maize by reverse transcription-PCR (RT-
PCR). For transient expression assays, constructs were
based on a pGD vector (Goodin et al. 2002). All con-
structs were confirmed by sequencing. Primers used in
this study are listed in Additional file 2: Table S1.

Preparation of MCMV RNA transcripts
RNA transcripts of MCMV (pMCM41) were prepared as
described previously (Scheets et al. 1993; Zhu et al.
2014). Plasmids (pMCM41) linearized with Sma I were
used for in vitro transcription of RNAs. The MCMV
RNA transcripts were synthesized using a T7 RiboMAX™
Express Large Scale RNA Production System (Promaga,
Madison, WI, USA; Cat: P1320). Then the RNA tran-
scripts were treated with RQ1 RNase-free DNase (Pro-
mega) followed by extraction with phenol/chloroform
and then only chloroform. Next, the resulting super-
natant was mixed with 3M NaAc (pH 5.2) (10:1, v/v)
and ethanol (1:2, v/v) followed by precipitation at -80 °C
for 20 min. The RNA transcripts were pelleted at 13000
g for 10 min at 4 °C and the pellet was washed twice with
ice-cold 75% ethanol (1 mL). The pellet was then resus-
pended in RNase-free double-distilled (dd)H2O.

Isolation and transfection of maize protoplasts
Isolation and transfection of maize protoplasts were con-
ducted as described previously (Sheen 1991; Zhu et al.
2014). For catalase inhibitor treatment assay, maize pro-
toplasts were transfected with in vitro transcripts of
MCMV (1 μg) and incubated with 20mM 3-amino-1, 2,
4-triazole (3-AT; Sigma-Aldrich) at 25 °C under light for
18 h. For the ROS inducer methyl viologen (MV) treat-
ment assay, maize protoplasts were transfected with
in vitro transcripts of MCMV (1 μg) and incubated with
10 μM MV (Sigma-Aldrich) at 25 °C under light for 18 h.
Each experiment was repeated at least three times using
different batches of maize protoplasts.

Particle bombardment
Particle bombardment was performed as described pre-
viously (Kirienko et al. 2012; Chen et al. 2017), with
slight modifications. One-month-old maize plants (B73)
were inoculated with MCMV or phosphate buffer
(mock). At 2 weeks post-inoculation, the maize tissue
samples were collected and prepared before use. Ap-
proximately 8 μL (60 μg/μL) of the gold particle stock
solution was mixed with 5 μg plasmid DNA, 20 μL of
0.1M spermidine solution and 10 μL of 2.5M CaCl2 so-
lution in an Eppendorf tube. The mixture was vortexed
at a low speed for 3 min and then pelleted at 10,000 g for
20 s. After two washes in 1 mL of 100% ethanol, the pel-
lets of gold-plasmid DNA particles were resuspended
with 10 μL of 100% ethanol solution and transferred to
microcarriers (Bio-Rad). Vacuum pressure within the
chamber was allowed to reach 27 to 28 inches of mer-
cury prior to firing (PDS-1000/He system, Bio-Rad). The
bombarded leaves were allowed to recover at 25 °C in
the dark and examined for the expression of fusion pro-
teins at 36 hpb.

dsRNA binding-dependent fluorescence complementation
(dRBFC)
Mazie protoplasts were prepared and transfected with a
previously reported B2-YN/VP35-YC reporter (Cheng
et al. 2015) and GFP-P50. At 3 dpt, the protoplasts were
harvested for imaging with a confocal microscope.

Detection of ROS production
For ROS staining assays with CM-H2DCFDA [5-(and-6)-
chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate;
Invitrogen], maize protoplasts were incubated with the
ROS inducer MV for 18 h. Then the maize protoplasts
were incubated for 15 min at room temperature in 1 μM
CM-H2DCFDA. Fluorescence was observed by using a
laser scanning confocal microscope (Leica, SP8).

Confocal microscopic observation
For subcellular localization and dRBFC assays, samples
were observed under a laser scanning confocal micro-
scope (Leica, SP8). The fluorescence of GFP and YFP
was both excited at 488 nm, then captured at 495–545
nm and 520–580 nm, respectively. The fluorescence of
DsRed were excited by wavelength of 552 nm and de-
tected at 562 to 620 nm. For co-localization analysis,
each of the channel was scanned and imaged sequen-
tially. The images were processed using Adobe Photo-
shop (Adobe, San Jose, CA, USA).

Immunoblot analysis
The protein extraction and immunoblot assays were per-
formed as described previously (Cao et al. 2012). MCMV
coat protein (CP) antibody was kindly provided by Profs.

Jiao et al. Phytopathology Research            (2021) 3:17 Page 9 of 11



Xueping Zhou and Jianxiang Wu (Zhejiang University)
and used at a dilution of 1: 10000.
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